Solveeit Logo

Question

Question: A thin rod AB of length L is hinged at A such that it is free to rotate parallel to the inclined pla...

A thin rod AB of length L is hinged at A such that it is free to rotate parallel to the inclined plane. Its linear mass density varies as dmdx=kx\frac{dm}{dx}=kx where x is distance from end A and k is a constant. The time period of small oscillations if it is slightly displaced from equilibrium position is T=2πNL10gT = 2\pi \sqrt{\frac{NL}{10g}} where N=_____N = \_\_\_\_\_.

Answer

15

Explanation

Solution

Solution:

  1. Center of Mass (CM):
    The linear mass density is
    dmdx=kx\dfrac{dm}{dx}= kx.
    Total mass:
    M=0Lkxdx=kL22M=\int_0^L kx\,dx=\frac{kL^2}{2}.
    CM location:
    xcm=1M0Lxdm=0Lx(kx)dxkL22=kL3/3kL2/2=2L3x_{cm}=\frac{1}{M}\int_0^L x\,dm=\frac{\int_0^L x(kx)dx}{\frac{kL^2}{2}}=\frac{kL^3/3}{kL^2/2}=\frac{2L}{3}.

  2. Moment of Inertia about A:
    I=0Lx2dm=0Lx2(kxdx)=k0Lx3dx=kL44I=\int_0^L x^2\,dm=\int_0^L x^2(kx\,dx)=k\int_0^L x^3dx=\frac{kL^4}{4}.
    Thus,
    IM=kL44kL22=L22\frac{I}{M}=\frac{\frac{kL^4}{4}}{\frac{kL^2}{2}}=\frac{L^2}{2}.

  3. Effective Gravitational Acceleration:
    Since the rod is free to rotate in a plane parallel to the inclined plane (inclination α=30\alpha=30^\circ) the restoring force is due to the component of gravity along the plane. Thus, use
    geff=gsin30=g2g_{\text{eff}}=g\sin30^\circ=\frac{g}{2}.

  4. Using the Physical Pendulum Formula:
    For small oscillations the period is given by

    T=2πIMgeffxcm.T = 2\pi\sqrt{\frac{I}{M\,g_{\text{eff}}\,x_{cm}}}.

    Substitute I/M=L22I/M=\frac{L^2}{2}, xcm=2L3x_{cm}=\frac{2L}{3} and geff=g2g_{\text{eff}}=\frac{g}{2}:

    T=2πL2/2(g/2)(2L/3)=2πL2/2gL3=2π3L2g.T = 2\pi\sqrt{\frac{L^2/2}{(g/2)(2L/3)}} = 2\pi\sqrt{\frac{L^2/2}{\frac{gL}{3}}} = 2\pi\sqrt{\frac{3L}{2g}}.
  5. Comparing with Given Expression:
    Given that

    T=2πNL10g,T =2\pi \sqrt{\frac{NL}{10\,g}},

    equate the expressions under the square root:

    3L2g=NL10g.\frac{3L}{2g}=\frac{NL}{10g}.

    Cancel L/gL/g to obtain:

    32=N10N=1032=15.\frac{3}{2}=\frac{N}{10}\quad\Longrightarrow\quad N=10\cdot\frac{3}{2}=15.

Explanation (Minimal):

  • Compute total mass M=kL22M=\frac{kL^2}{2} and xcm=2L3x_{cm}=\frac{2L}{3}.
  • Find moment of inertia about A: I=kL44I=\frac{kL^4}{4}.
  • Use physical pendulum formula with effective geff=gsin30=g2g_{\text{eff}}=g\sin30 =\frac{g}{2}:
    T=2πIMgeffxcm=2π3L2gT=2\pi\sqrt{\frac{I}{M\,g_{\text{eff}}\,x_{cm}}}=\displaystyle2\pi\sqrt{\frac{3L}{2g}}.
  • Equate with T=2πNL10gT=2\pi\sqrt{\frac{NL}{10g}} to get N=15N=15.

Answer:
N=15N = 15.