Solveeit Logo

Question

Physics Question on System of Particles & Rotational Motion

A thin ring of mass 2 kg and radius 0.5 m is rolling without slipping on a horizontal plane with velocity 1 m/s. A small ball of mass 0.1 kg, moving with velocity 20 m/s in the opposite direction, hits the ring at a height of 0.75 m and goes vertically up with velocity 10 m/s. Immediately after the collision

A

the ring has pure rotation about its stationary CM

B

the ring comes to a complete stop

C

friction between the ring and the ground is to the left

D

there is no friction between the ring and the ground

Answer

friction between the ring and the ground is to the left

Explanation

Solution

The data is incomplete. Let us assume that friction from ground on ring is not impulsive during impact.
From linear momentum conservation in horizontal direction,
we have
(2×1)+(0.1×20)(-2\times1)+(0.1\times20)
(0.1×0)+(2×v)(0.1\times0)+(2\times v)
Here, v is the velocity of CM of ring after impact. Solving the above equation, we have v = 0
Thus CM becomes stationary.
\therefore Correct option is (a).
Linear impulse during impact
(i) In horizontal direction
J1=?p=0.1×20=2NsJ_1=?p=0.1\times20=2N-s
(ii) In vertical direction J2=?p=0.1×10=1NsJ_2=?p=0.1\times10=1N-s
Writing the equation (about CM)
Angular impulse = Change in angular momentum
We have,
1×(32×12)2×0.5×12=2×(0.5)2[?10.5]1\times\bigg(\frac{\sqrt3}{2}\times\frac{1}{2}\bigg)-2\times0.5\times\frac{1}{2}=2\times(0.5)^2\bigg[?-\frac{1}{0.5}\bigg]
Solving this equation co comes out to be positive or ?? anti-clockwise. So just after collision rightwards slipping is taking place.
Hence, friction is leftwards.
Therefore, option (c) is also correct.