Question
Question: A thin rectangular plate of dimensions \(a \times b\) lies in the xy-plane with one corner at the or...
A thin rectangular plate of dimensions a×b lies in the xy-plane with one corner at the origin. The surface mass density at point (x,y) is given by: σ(x,y)=σ0⋅(a2bx2y) (where σ0 is a constant)
Find the center of mass (xCM,yCM).
(43a,32b)
Solution
To find the center of mass (xCM,yCM) of a thin rectangular plate with a given surface mass density σ(x,y), we use the following formulas:
xCM=∬dm∬xdmandyCM=∬dm∬ydmHere, dm=σ(x,y)dA=σ(x,y)dxdy. The plate lies in the xy-plane with one corner at the origin and dimensions a×b, so the integration limits are from x=0 to x=a and y=0 to y=b. The surface mass density is given by σ(x,y)=σ0⋅(a2bx2y).
1. Calculate the total mass (M):
M=∬dm=∫0a∫0bσ0a2bx2ydydx M=a2bσ0∫0ax2(∫0bydy)dxFirst, evaluate the inner integral:
∫0bydy=[2y2]0b=2b2Substitute this back:
M=a2bσ0∫0ax2(2b2)dx=2a2bσ0b2∫0ax2dx=2a2σ0b∫0ax2dxNow, evaluate the outer integral:
∫0ax2dx=[3x3]0a=3a3Substitute this back to find M:
M=2a2σ0b(3a3)=6σ0ab2. Calculate the numerator for xCM (∬xdm):
∬xdm=∫0a∫0bx⋅σ0a2bx2ydydx ∬xdm=a2bσ0∫0ax3(∫0bydy)dxUsing ∫0bydy=2b2:
∬xdm=a2bσ0∫0ax3(2b2)dx=2a2bσ0b2∫0ax3dx=2a2σ0b∫0ax3dxNow, evaluate the integral:
∫0ax3dx=[4x4]0a=4a4Substitute this back:
∬xdm=2a2σ0b(4a4)=8σ0a2b3. Calculate xCM:
xCM=M∬xdm=6σ0ab8σ0a2b=8σ0a2b⋅σ0ab6=86a=43a4. Calculate the numerator for yCM (∬ydm):
∬ydm=∫0a∫0by⋅σ0a2bx2ydydx ∬ydm=a2bσ0∫0ax2(∫0by2dy)dxFirst, evaluate the inner integral:
∫0by2dy=[3y3]0b=3b3Substitute this back:
∬ydm=a2bσ0∫0ax2(3b3)dx=3a2bσ0b3∫0ax2dx=3a2σ0b2∫0ax2dxUsing ∫0ax2dx=3a3:
∬ydm=3a2σ0b2(3a3)=9σ0ab25. Calculate yCM:
yCM=M∬ydm=6σ0ab9σ0ab2=9σ0ab2⋅σ0ab6=96b=32bThe center of mass is (43a,32b).
The final answer is (43a,32b).
Explanation of the solution:
The center of mass (xCM,yCM) for a continuous two-dimensional object is found by integrating xdm and ydm over the entire mass and dividing by the total mass M. The differential mass element dm is given by σ(x,y)dxdy. We performed double integrals for M, xCM numerator, and yCM numerator, substituting the given density function σ(x,y) and the integration limits corresponding to the plate's dimensions.