Solveeit Logo

Question

Question: A thin rectangular plate of dimensions \(a \times b\) lies in the xy-plane with one corner at the or...

A thin rectangular plate of dimensions a×ba \times b lies in the xy-plane with one corner at the origin. The surface mass density at point (x,y)(x, y) is given by: σ(x,y)=σ0(x2ya2b)\sigma(x, y) = \sigma_0 \cdot \left(\frac{x^2 y}{a^2 b}\right) (where σ0\sigma_0 is a constant)

Find the center of mass (xCM,yCM)(x_{CM}, y_{CM}).

Answer

(3a4,2b3)\left(\frac{3a}{4}, \frac{2b}{3}\right)

Explanation

Solution

To find the center of mass (xCM,yCM)(x_{CM}, y_{CM}) of a thin rectangular plate with a given surface mass density σ(x,y)\sigma(x,y), we use the following formulas:

xCM=xdmdmandyCM=ydmdmx_{CM} = \frac{\iint x \, dm}{\iint dm} \quad \text{and} \quad y_{CM} = \frac{\iint y \, dm}{\iint dm}

Here, dm=σ(x,y)dA=σ(x,y)dxdydm = \sigma(x,y) \, dA = \sigma(x,y) \, dx \, dy. The plate lies in the xy-plane with one corner at the origin and dimensions a×ba \times b, so the integration limits are from x=0x=0 to x=ax=a and y=0y=0 to y=by=b. The surface mass density is given by σ(x,y)=σ0(x2ya2b)\sigma(x,y) = \sigma_0 \cdot \left(\frac{x^2 y}{a^2 b}\right).

1. Calculate the total mass (M):

M=dm=0a0bσ0x2ya2bdydxM = \iint dm = \int_0^a \int_0^b \sigma_0 \frac{x^2 y}{a^2 b} \, dy \, dx M=σ0a2b0ax2(0bydy)dxM = \frac{\sigma_0}{a^2 b} \int_0^a x^2 \left( \int_0^b y \, dy \right) \, dx

First, evaluate the inner integral:

0bydy=[y22]0b=b22\int_0^b y \, dy = \left[ \frac{y^2}{2} \right]_0^b = \frac{b^2}{2}

Substitute this back:

M=σ0a2b0ax2(b22)dx=σ0b22a2b0ax2dx=σ0b2a20ax2dxM = \frac{\sigma_0}{a^2 b} \int_0^a x^2 \left( \frac{b^2}{2} \right) \, dx = \frac{\sigma_0 b^2}{2a^2 b} \int_0^a x^2 \, dx = \frac{\sigma_0 b}{2a^2} \int_0^a x^2 \, dx

Now, evaluate the outer integral:

0ax2dx=[x33]0a=a33\int_0^a x^2 \, dx = \left[ \frac{x^3}{3} \right]_0^a = \frac{a^3}{3}

Substitute this back to find M:

M=σ0b2a2(a33)=σ0ab6M = \frac{\sigma_0 b}{2a^2} \left( \frac{a^3}{3} \right) = \frac{\sigma_0 a b}{6}

2. Calculate the numerator for xCMx_{CM} (xdm\iint x \, dm):

xdm=0a0bxσ0x2ya2bdydx\iint x \, dm = \int_0^a \int_0^b x \cdot \sigma_0 \frac{x^2 y}{a^2 b} \, dy \, dx xdm=σ0a2b0ax3(0bydy)dx\iint x \, dm = \frac{\sigma_0}{a^2 b} \int_0^a x^3 \left( \int_0^b y \, dy \right) \, dx

Using 0bydy=b22\int_0^b y \, dy = \frac{b^2}{2}:

xdm=σ0a2b0ax3(b22)dx=σ0b22a2b0ax3dx=σ0b2a20ax3dx\iint x \, dm = \frac{\sigma_0}{a^2 b} \int_0^a x^3 \left( \frac{b^2}{2} \right) \, dx = \frac{\sigma_0 b^2}{2a^2 b} \int_0^a x^3 \, dx = \frac{\sigma_0 b}{2a^2} \int_0^a x^3 \, dx

Now, evaluate the integral:

0ax3dx=[x44]0a=a44\int_0^a x^3 \, dx = \left[ \frac{x^4}{4} \right]_0^a = \frac{a^4}{4}

Substitute this back:

xdm=σ0b2a2(a44)=σ0a2b8\iint x \, dm = \frac{\sigma_0 b}{2a^2} \left( \frac{a^4}{4} \right) = \frac{\sigma_0 a^2 b}{8}

3. Calculate xCMx_{CM}:

xCM=xdmM=σ0a2b8σ0ab6=σ0a2b86σ0ab=6a8=3a4x_{CM} = \frac{\iint x \, dm}{M} = \frac{\frac{\sigma_0 a^2 b}{8}}{\frac{\sigma_0 a b}{6}} = \frac{\sigma_0 a^2 b}{8} \cdot \frac{6}{\sigma_0 a b} = \frac{6a}{8} = \frac{3a}{4}

4. Calculate the numerator for yCMy_{CM} (ydm\iint y \, dm):

ydm=0a0byσ0x2ya2bdydx\iint y \, dm = \int_0^a \int_0^b y \cdot \sigma_0 \frac{x^2 y}{a^2 b} \, dy \, dx ydm=σ0a2b0ax2(0by2dy)dx\iint y \, dm = \frac{\sigma_0}{a^2 b} \int_0^a x^2 \left( \int_0^b y^2 \, dy \right) \, dx

First, evaluate the inner integral:

0by2dy=[y33]0b=b33\int_0^b y^2 \, dy = \left[ \frac{y^3}{3} \right]_0^b = \frac{b^3}{3}

Substitute this back:

ydm=σ0a2b0ax2(b33)dx=σ0b33a2b0ax2dx=σ0b23a20ax2dx\iint y \, dm = \frac{\sigma_0}{a^2 b} \int_0^a x^2 \left( \frac{b^3}{3} \right) \, dx = \frac{\sigma_0 b^3}{3a^2 b} \int_0^a x^2 \, dx = \frac{\sigma_0 b^2}{3a^2} \int_0^a x^2 \, dx

Using 0ax2dx=a33\int_0^a x^2 \, dx = \frac{a^3}{3}:

ydm=σ0b23a2(a33)=σ0ab29\iint y \, dm = \frac{\sigma_0 b^2}{3a^2} \left( \frac{a^3}{3} \right) = \frac{\sigma_0 a b^2}{9}

5. Calculate yCMy_{CM}:

yCM=ydmM=σ0ab29σ0ab6=σ0ab296σ0ab=6b9=2b3y_{CM} = \frac{\iint y \, dm}{M} = \frac{\frac{\sigma_0 a b^2}{9}}{\frac{\sigma_0 a b}{6}} = \frac{\sigma_0 a b^2}{9} \cdot \frac{6}{\sigma_0 a b} = \frac{6b}{9} = \frac{2b}{3}

The center of mass is (3a4,2b3)\left( \frac{3a}{4}, \frac{2b}{3} \right).

The final answer is (3a4,2b3)\boxed{\left(\frac{3a}{4}, \frac{2b}{3}\right)}.

Explanation of the solution:

The center of mass (xCM,yCM)(x_{CM}, y_{CM}) for a continuous two-dimensional object is found by integrating xdmx \, dm and ydmy \, dm over the entire mass and dividing by the total mass MM. The differential mass element dmdm is given by σ(x,y)dxdy\sigma(x,y) \, dx \, dy. We performed double integrals for MM, xCMx_{CM} numerator, and yCMy_{CM} numerator, substituting the given density function σ(x,y)\sigma(x,y) and the integration limits corresponding to the plate's dimensions.