Solveeit Logo

Question

Question: A thin rectangular magnet suspended freely has a period of oscillation of \(4s.\) If it is broken in...

A thin rectangular magnet suspended freely has a period of oscillation of 4s.4s. If it is broken into two halves each having half their initial length, then when suspended similarly, the time period of oscillation of each part will be:
A) 4s4s
B) 2s2s
C) 1s1s
D) 42s4\sqrt{2}s

Explanation

Solution

When a rectangular magnet is broken into two halves each having half their initial length and the magnetic moment is also half
L=L2L'=\dfrac{L}{2}
M=M2M'=\dfrac{M}{2}
M=M= Magnetic moment

Formula Used:
T=2πIMBT=2\pi \sqrt{\dfrac{I}{MB}}

Complete step by step answer:
When a thin rectangular magnet is suspended freely in an external magnetic field, it experiences a force repulsion or attraction, due to which the thin rectangular magnet oscillates.
The formula for the time period of oscillation
T=2πIMBT=2\pi \sqrt{\dfrac{I}{MB}} ……………………….(i)
Where I=I= Moment of inertia
M=M= Magnetic moment
B=B= Magnetic field
Moment of inertia
I=MR212I=\dfrac{M{{R}^{2}}}{12}
M=x×lM=x\times l …………….(ii)
Where x=x= pole strength
When the magnet is broken into two equal parts, then the new length of magnet is l2\dfrac{l}{2}
And new magnetic dipole moment
M=x×l2M'=x\times \dfrac{l}{2} ……………..(iii)
From equation (ii)and (iii)
M=M2M'=\dfrac{M}{2}
And now moment of inertia
I=M(l)212 I=(M2)×(l2)212 I=Ml28×12 I=I8 \begin{aligned} & \Rightarrow I'=\dfrac{M'{{\left( l' \right)}^{2}}}{12} \\\ & \Rightarrow I'=\dfrac{\left( \dfrac{M}{2} \right)\times {{\left( \dfrac{l}{2} \right)}^{2}}}{12} \\\ & \Rightarrow I'=\dfrac{M{{l}^{2}}}{8\times 12} \\\ & \Rightarrow I'=\dfrac{I}{8} \\\ \end{aligned}
T=2πIMBT'=2\pi \sqrt{\dfrac{I'}{M'B}} ………………(iv)

From equation (iv) divided by equation (i)
TT=2πIMB2πIMB\Rightarrow \dfrac{T'}{T}=\dfrac{2\pi \sqrt{\dfrac{I'}{M'B}}}{2\pi \sqrt{\dfrac{I}{MB}}}
TT=IMBIMB=IM×MI\Rightarrow \dfrac{T'}{T}=\sqrt{\dfrac{\dfrac{I'}{M'B}}{\dfrac{I}{MB}}}=\sqrt{\dfrac{I'}{M'}\times \dfrac{M}{I}}
TT=I8M2×MI=14=12\Rightarrow \dfrac{T'}{T}=\sqrt{\dfrac{\dfrac{I}{8}}{\dfrac{M}{2}}\times \dfrac{M}{I}}=\sqrt{\dfrac{1}{4}}=\dfrac{1}{2}
T=T2\Rightarrow T'=\dfrac{T}{2}
Given T=4sT=4s
T=42 T=2sec \begin{aligned} & \Rightarrow T'=\dfrac{4}{2} \\\ & \Rightarrow T'=2\sec \\\ \end{aligned}
So we can say that option B is correct, that is 2s2s.

Note: In the formula, BB is the external magnetic field, not its own magnetic field of magnet and BB is the same for both the cases.