Solveeit Logo

Question

Question: A thin prism, refracting angle A<sup>0</sup> = 1<sup>0</sup> = \(\frac { \pi } { 180 }\) radian is k...

A thin prism, refracting angle A0 = 10 = π180\frac { \pi } { 180 } radian is kept in front of a concave mirror. The object is kept at the origin of the co-ordinate system. If the image is formed at co-ordinates (10 cm, π24- \frac { \pi } { 24 } cm).Assuming para-axial ray approximation, determine the refractive index of prism –

A

2.5

B

1.5

C

2.0

D

3.0

Answer

1.5

Explanation

Solution

d = (m – 1) A = (μ1)×π180( \mu - 1 ) \times \frac { \pi } { 180 }

I1 act as an object for concave mirror.

After reflection at concave mirror final image will form after one more refraction at prism.

I2I3 = 5 × (m – 1) π180\frac { \pi } { 180 }

Distance of I2 from axis = π24(μ1)π36\frac { \pi } { 24 } - ( \mu - 1 ) \frac { \pi } { 36 }

Magnification at the second event

m=[π24(μ1)π36(μ1)π12]| \mathrm { m } | = \left[ \frac { \frac { \pi } { 24 } - ( \mu - 1 ) \frac { \pi } { 36 } } { ( \mu - 1 ) \frac { \pi } { 12 } } \right]

| m | = + vu\frac { \mathrm { v } } { \mathrm { u } } = 2030\frac { 20 } { 30 }= 23\frac { 2 } { 3 }

23×(μ1)π12\frac { 2 } { 3 } \times ( \mu - 1 ) \frac { \pi } { 12 } = π24(μ1)π36\frac { \pi } { 24 } - ( \mu - 1 ) \frac { \pi } { 36 }

(μ1)3\frac { ( \mu - 1 ) } { 3 }+ 23(μ1)\frac { 2 } { 3 } ( \mu - 1 ) = 12\frac { 1 } { 2 }

m – 1 = 0.5

m = 1.5