Solveeit Logo

Question

Physics Question on electrostatic potential and capacitance

A thin non-conducting rod of length 50cm50 \,cm has a positive charge of uniform linear density 1012C/m10^{-12} \,C / m. Find the electric potential due to the rod at a point, which is at a perpendicular distance of 1.0cm1.0 \,cm from one-end of the rod (ε0=8.8×1012F/m)\left(\varepsilon_{0}=8.8 \times 10^{-12} F / m \right).

A

0.02 V

B

0.04 V

C

0.06 V

D

1.02 V

Answer

0.04 V

Explanation

Solution

The given, λ=1012C/m\lambda=10^{-12}\, C / m,
l=50cml=50\, cm,
r=1×102mr=1 \times 10^{-2} \,m
and ε0=8.8×1012F/m\varepsilon_{0}=8.8 \times 10^{-12} \,F / m
We know that, λ=Ql\lambda=\frac{Q}{l}
1012=Q50cm10^{-12}=\frac{Q}{50\, cm }
or 1012=2Q2×50cm10^{-12}=\frac{2 Q}{2 \times 50\,cm }
1012=2Q100cm,10^{-12}=\frac{2 Q}{100\, cm },
1012=2Q1m10^{-12}=\frac{2 Q}{1 \,m},
Q=12×1012CQ=\frac{1}{2} \times 10^{-12} \,C,
Electric potential V=14πε0QrV=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{Q}{r}
=14×3.14×8.8×101212×10121×102=\frac{1}{4 \times 3.14 \times 8.8 \times 10^{-12}} \cdot \frac{\frac{1}{2} \times 10^{-12}}{1 \times 10^{-2}}
=100221.05=0.4V=\frac{100}{221.05}=0.4 \,V