Solveeit Logo

Question

Question: A thin magnetic needle oscillates in a horizontal plane with a period T. It is broken into *n* equal...

A thin magnetic needle oscillates in a horizontal plane with a period T. It is broken into n equal parts. The time period of each part will be

A

nT

B

n2T

C

Tn\frac { \mathrm { T } } { \mathrm { n } }

D

Answer

Tn\frac { \mathrm { T } } { \mathrm { n } }

Explanation

Solution

: Since for each part of magnetic needle

mass , (m)=mn\left( \mathrm { m } ^ { \prime } \right) = \frac { \mathrm { m } } { \mathrm { n } } length,

Then moment of intertia

(l)=mass×( length )212\left( l ^ { \prime } \right) = \frac { \operatorname { mass } \times ( \text { length } ) ^ { 2 } } { 12 }

=112mn(ln)2=ml2121n3=In3= \frac { 1 } { 12 } \frac { \mathrm { m } } { \mathrm { n } } \left( \frac { \mathrm { l } } { \mathrm { n } } \right) ^ { 2 } = \frac { \mathrm { ml } ^ { 2 } } { 12 } \cdot \frac { 1 } { \mathrm { n } ^ { 3 } } = \frac { \mathrm { I } ^ { \prime } } { \mathrm { n } ^ { 3 } }

Now magnetization, (M) = pole strength ×length=M/n the time period of each particle,