Solveeit Logo

Question

Question: A thin long cylinder of radius $R$ is surrounded by a co-axial hollow cylinder of radius $4R$. Both ...

A thin long cylinder of radius RR is surrounded by a co-axial hollow cylinder of radius 4R4R. Both cylinders form a complete circuit for current II. Find self inductance per unit length for the arrangement.

Answer

The self inductance per unit length for the arrangement is μ0πln(2)\frac{\mu_0}{\pi} \ln(2).

Explanation

Solution

The magnetic field in the region R<r<4RR < r < 4R is given by Ampere's Law: B=μ0I2πrB = \frac{\mu_0 I}{2\pi r} The magnetic flux per unit length through this region is: Φl=R4RBdr=R4Rμ0I2πrdr=μ0I2π[lnr]R4R=μ0I2π(ln(4R)ln(R))=μ0I2πln(4RR)=μ0I2πln(4)\frac{\Phi}{l} = \int_R^{4R} B dr = \int_R^{4R} \frac{\mu_0 I}{2\pi r} dr = \frac{\mu_0 I}{2\pi} [\ln r]_R^{4R} = \frac{\mu_0 I}{2\pi} (\ln(4R) - \ln(R)) = \frac{\mu_0 I}{2\pi} \ln\left(\frac{4R}{R}\right) = \frac{\mu_0 I}{2\pi} \ln(4) The self-inductance per unit length is L/l=Φ/lIL/l = \frac{\Phi/l}{I}: Ll=μ0I2πln(4)I=μ02πln(4)=μ02πln(22)=μ02π(2ln2)=μ0πln(2)\frac{L}{l} = \frac{\frac{\mu_0 I}{2\pi} \ln(4)}{I} = \frac{\mu_0}{2\pi} \ln(4) = \frac{\mu_0}{2\pi} \ln(2^2) = \frac{\mu_0}{2\pi} (2 \ln 2) = \frac{\mu_0}{\pi} \ln(2)