Solveeit Logo

Question

Physics Question on Ray optics and optical instruments

A thin lens made of glass of refractive index μ=1.5\mu = 1.5 has a focal length equal to 12 cm in air. lt is now immersed in water (μ=43).\bigg(\mu = \frac{4}{3}\bigg). Its new focal length is

A

48 cm

B

36 cm

C

24 cm

D

12 cm

Answer

48 cm

Explanation

Solution

Focal length in air is given by,
1fa=(aμg1)(1R11R2)\frac{1}{f_a}=(_a\mu_g-1)\bigg(\frac{1}{R_1}-\frac{1}{R_2}\bigg)
The focal length of lens immersed in water is given by
1fl=(lμg1)(1R11R2)\frac{1}{f_l}=(_l \mu_g-1)\bigg(\frac{1}{R_1}-\frac{1}{R_2}\bigg)
where R1,R2 R_1, R_2 are radii of curvatures of the two surfaces oflens
and 1μg_1 \mu_g is refractive index of glass with respect to liquid.

Also 1μg=aμgaμl_1 \mu_g = \frac{_a \mu_g}{_a \mu_l }

Given, ang=1.5,fa=12cm,anl=43_a\, n _g = 1.5, f_a = 12\, cm, _a n_l = \frac{4}{3}
f1fa=(aμg1)(lμg1)\therefore \frac{f_1}{f_a}=\frac{(_a\mu_g-1)}{(_l\mu_g-1)}
f112=(1.51)(1.54/31)=0.5×40.5\frac{f_1}{12}=\frac{(1.5-1)}{\bigg(\frac{1.5}{4/3}-1\bigg)}=\frac{0.5 \times 4 }{0.5}
f1=4×12\Rightarrow f_1 = 4 \times 12
=48cm= 48\, cm