Solveeit Logo

Question

Physics Question on Electric Field

A thin glass rod is bent in a semicircle of radius R.A charge is non-uniformly distributed along the rod with a linear charge density λ=λ0sinθ\lambda=\lambda_0sin\theta (λ0\lambda_0 is a positive constant). The electric field at the center P of the semicircle is

A

λ08πϵ0Rj^-\frac{\lambda_0}{8\pi\epsilon_0R}\hat{j}

B

λ08πϵ0Rj^\frac{\lambda_0}{8\pi\epsilon_0R}\hat{j}

C

λ08πϵ0Ri^\frac{\lambda_0}{8\pi\epsilon_0R}\hat{i}

D

λ08πϵ0Ri^-\frac{\lambda_0}{8\pi\epsilon_0R}\hat{i}

Answer

λ08πϵ0Ri^\frac{\lambda_0}{8\pi\epsilon_0R}\hat{i}

Explanation

Solution

The correct answer is option (C): λ08πϵ0Ri^\frac{\lambda_0}{8\pi\epsilon_0R}\hat{i}
The magnitude of the field = dE=14πϵ0rdθ×Q/(πr/2)r2=Q2π2ϵ0r2dθdE=\frac{1}{4\pi\epsilon_0}\frac{rd\theta\times Q/(\pi r/2)}{r^2}=\frac{Q}{2\pi^2\epsilon_0r^2}d\theta
E=0π22dEsinθ=20π2Q2πϵ0r2sinθdθ=Qπ2ϵ0r2E=\int_{0}^{\frac{\pi}{2}}2dEsin\theta =2\int_{0}^{\frac{\pi}{2}}\frac{Q}{2\pi\epsilon_0r^2}sin\theta d \theta =\frac{Q}{\pi^2\epsilon_0r^2}=