Solveeit Logo

Question

Physics Question on Ray optics and optical instruments

A thin equiconvex lens of refractive index 32\frac{3}{2} and radius of curvature 30cm30\, cm is put in water (refractive index = 43)\frac{4}{3}), its focal length is

A

0.15m0.15 \,m

B

0.30m0.30 \,m

C

0.45m0.45\, m

D

1.20m1.20 \,m

Answer

1.20m1.20 \,m

Explanation

Solution

According to lens maker's formula 1f=(μ1)(1R11R2)\frac{1}{f}=\left(\mu-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) where μ=μLμM\mu=\frac{\mu_{L}}{\mu_{M}} Here, μL=32\mu_{L}=\frac{3}{2}, μM=43\mu_{M}=\frac{4}{3}, R1=+30cmR_{1}=+30\,cm, R2=30cmR_{2}=-30\,cm 1f=(32431)(130130)\therefore \frac{1}{f}=\left(\frac{\frac{3}{2}}{\frac{4}{3}}-1\right)\left(\frac{1}{30}-\frac{1}{-30}\right) =(18)(230)=\left(\frac{1}{8}\right)\left(\frac{2}{30}\right) 1f=14×30=1120\frac{1}{f}=\frac{1}{4\times30}=\frac{1}{120} or f=120cm=1.2mf=120\,cm=1.2\,m