Solveeit Logo

Question

Question: A thin copper tube of outer radius 0.5 cm carries a liquid flowing at T = 100°C. The copper tube los...

A thin copper tube of outer radius 0.5 cm carries a liquid flowing at T = 100°C. The copper tube loses heat according to Newton's law with constant of proportionality 3 × 10⁻³cal/cm²sec°C. The temperature of surrounding is 20°C. Now we coat a layer with thermal conductivity 2.8 × 10⁻³cal/cm°Csec. The layer is 0.5 cm thick. Assume that outer surface of layer loses heat with same constant of proportionality: (Take : ln2 = 0.7)

Answer

The rate of heat loss per centimeter of the tube is approximately 0.86 cal/s per cm.

Explanation

Solution

Solution:

  1. Determine the radii:

    • Inner surface of insulation (i.e. copper tube's outer surface):

      r1=0.5cmr_1 = 0.5\,\text{cm}

    • Outer surface of insulation:

      r2=0.5+0.5=1.0cmr_2 = 0.5 + 0.5 = 1.0\,\text{cm}

  2. Thermal Resistances:

    Let the length L=1cmL = 1\,\text{cm} (per unit length).

    (a) Conduction resistance through the insulation:

    For a cylindrical shell:

    Rcond=ln(r2/r1)2πkLR_{\text{cond}} = \frac{\ln(r_2/r_1)}{2\pi k L}

    Using k=2.8×103cal/(cm\cdotp°C\cdotpsec)k = 2.8\times10^{-3}\,\text{cal/(cm·°C·sec)} and ln(2)=0.7\ln(2)=0.7:

    Rcond=0.72π(2.8×103)0.76.28×2.8×103.R_{\text{cond}} = \frac{0.7}{2\pi (2.8\times10^{-3})} \approx \frac{0.7}{6.28\times2.8\times10^{-3}}.

    Now,
    6.28×2.8×1030.0175846.28\times2.8\times10^{-3} \approx 0.017584
    So,

    Rcond0.70.01758439.8sec\cdotp°C/cal.R_{\text{cond}} \approx \frac{0.7}{0.017584} \approx 39.8\,\text{sec·°C/cal}.

    (b) Convection resistance at the outer surface of the insulation:

    The convective resistance is given by:

    Rconv=1hA=1h(2πr2L)R_{\text{conv}} = \frac{1}{hA} = \frac{1}{h(2\pi r_2 L)}

    Here, h=3×103cal/(cm2\cdotpsec\cdotp°C)h = 3\times10^{-3}\,\text{cal/(cm}^2\text{·sec·°C)} and r2=1.0cmr_2 = 1.0\,\text{cm}:

    Rconv=13×103(2π×1)=13×103×6.2810.0188453.1sec\cdotp°C/cal.R_{\text{conv}} = \frac{1}{3\times10^{-3}\,(2\pi \times 1)} = \frac{1}{3\times10^{-3}\times6.28} \approx \frac{1}{0.01884} \approx 53.1\,\text{sec·°C/cal}.
  3. Total Thermal Resistance:

    Since resistances are in series:

    Rtotal=Rcond+Rconv39.8+53.192.9sec\cdotp°C/cal.R_{\text{total}} = R_{\text{cond}} + R_{\text{conv}} \approx 39.8 + 53.1 \approx 92.9\,\text{sec·°C/cal}.
  4. Heat Loss Calculation:

    The liquid in the copper tube is at T=100°CT = 100\,°\text{C} and ambient is 20°C20\,°\text{C}. The temperature difference is:

    ΔT=10020=80°C.\Delta T = 100 - 20 = 80\,°\text{C}.

    The heat loss per unit length is given by:

    Q=ΔTRtotal8092.90.86cal/s per cm.Q = \frac{\Delta T}{R_{\text{total}}} \approx \frac{80}{92.9} \approx 0.86 \,\text{cal/s per cm}.

Explanation (Minimal):

  • Compute conduction resistance Rcond=ln(1/0.5)2π(2.8×103)40R_{\text{cond}}=\frac{\ln(1/0.5)}{2\pi (2.8\times10^{-3})} \approx 40.
  • Compute convection resistance Rconv=13×103(2π×1)53R_{\text{conv}}=\frac{1}{3\times10^{-3}(2\pi\times1)} \approx 53.
  • Total resistance 40+53=93\approx 40+53=93.
  • Heat loss: Q=80930.86cal/s per cmQ=\frac{80}{93}\approx 0.86\,\text{cal/s per cm}.