Solveeit Logo

Question

Physics Question on Ray optics and optical instruments

A thin convex lens of refractive index 1.51.5 has 20cm20 \,cm focal length in air. If the lens is completely immersed in a liquid of refractive index 1.61.6, its focal length will be

A

- 160 cm

B

- 100 cm

C

#ERROR!

D

#ERROR!

Answer

- 160 cm

Explanation

Solution

From lens formula 1f=(aμg1)(1R11R2)\frac{1}{f} =\left(_{a} \mu_{g}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) =(1.51)(1R11R2)=(1.5-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \dots(i) Also, lμg=μgμl=1.51.6_{l}\mu_{g}=\frac{\mu_{g}}{\mu_{l}}=\frac{1.5}{1.6} 1f=(lμg1)(1R11R2)\therefore \frac{1}{f'}=\left(_l\mu_{g}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) 1f=(1.51.61)(1R11R2)\frac{1}{f'}=\left(\frac{1.5}{1.6}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)\dots(ii) Dividing E (i) by E (ii), we get ff=(1.51.6)(1.51)=116×0.5\frac{f}{f'}=\frac{\left(\frac{1.5}{1.6}\right)}{(1.5-1)}=-\frac{1}{16 \times 0.5} f=16×0.5×ff'=-16 \times 0.5 \times f =16×0.5×20=16 \times 0.5 \times 20 f=160cm\Rightarrow f'=-160\, cm