Solveeit Logo

Question

Physics Question on Spherical Mirrors

A thin convex lens is made of two materials with refractive indices n1n_1 and n2n_2, as shown in figure. The radius of curvature of the left and right spherical surfaces are equal. / is the focal length of the lens when n1n_1 = n2n_2 = n. The focal length is f+Δff+\Delta f when n1n_1 = n and n2=n+Δnn_2 = n + \Delta n. Assuming Δn<<(n?1)\Delta n << (n ? 1) and 1<n<21 < n < 2, the correct statement(s) is/are,

A

$\left|\frac{\Delta f}{f}\right|

B

For n=1.5,Δn=103n = 1.5, \Delta n = 10^{-3} and f=20f = 20 cm, the value of Δf\left|\Delta f\right| will be 0.02 cm (round off to 2nd2^{nd} decimal place)

C

If Δnn<0\frac{\Delta n}{n}<0 then Δff>0\frac{\Delta f}{f}>0

D

The relation between Δff \frac{\Delta f}{f} and Δnn\frac{\Delta n}{n} remains unchanged if both the convex surfaces are replaced by concave surfaces of the same radius of curvature

Answer

The relation between Δff \frac{\Delta f}{f} and Δnn\frac{\Delta n}{n} remains unchanged if both the convex surfaces are replaced by concave surfaces of the same radius of curvature

Explanation

Solution

1f=(n11)(1R1)+(n21)(11R)\frac{1}{f}=\left(n_{1}-1\right)\left(\frac{1}{R}-\frac{1}{\infty}\right)+\left(n_{2}-1\right)\left(\frac{1}{\infty}-\frac{1}{-R}\right)
1f=(n11)R+n21R=(n1+n22)R\frac{1}{f}=\frac{\left(n_{1}-1\right)}{R}+\frac{n_{2}-1}{R}=\frac{\left(n_{1}+n_{2}-2\right)}{R}
Now Δff2=ΔnR\frac{\Delta f}{f^{2}}=\frac{\Delta n}{R}
Δff=Δn(n1+n22)=Δn[2n+Δn2]\frac{\Delta f}{f}=\frac{\Delta n}{\left(n_{1}+n_{2}-2\right)}=\frac{\Delta n}{\left[2n+\Delta n-2\right]}
For n1=n2=1.5Δn=103,f=20cmthenR=20cmn_{1}=n_{2}=1.5\quad\Delta n=10^{-3}, f=20cm then R = 20 cm
and Δf=103×20(2×1.52+103)=0.02cm.\Delta f=\frac{10^{-3}\times20}{\left(2\times1.5-2+10^{-3}\right)}=0.02\,cm.
If Δnn<0(Diversingnatureincreases)Δff>0\frac{\Delta n}{n}<0\left(Diversing nature increases\right) \,\therefore\frac{\Delta f}{f}>0
If the surfaces are replaced by concave surfaces of same radius, focal length changes the sign withsame magnitude.
Δff=Δn(2n+Δn2)\therefore\frac{\Delta f}{f}=\frac{\Delta n}{\left(2n+\Delta n-2\right)} (remain unchanged).