Solveeit Logo

Question

Physics Question on Ray optics and optical instruments

A thin converging lens is made up of glass of refractive index 1.5. It acts like a concave lens of focal length 50 cm, when immersed in a liquid of refractive index (158)\left( \frac{15}{8} \right) . The focal length of the converging lens in air is, in metre:

A

0.15

B

0.2

C

0.25

D

0.4

Answer

0.2

Explanation

Solution

Given: Focal length of concave lens =50cm=0.5m=50\,cm=0.5\,m Refractive index of lens of μlens=1.5{{\mu }_{lens}}=1.5 Refractive index of liquid μliquid=158{{\mu }_{liquid}}=\frac{15}{8} Now, from lens markers formula 1flens=(μlens1)(1R1+1R1)\frac{1}{{{f}_{lens}}=}({{\mu }_{lens}}-1)\left( \frac{1}{{{R}_{1}}}+\frac{1}{{{R}_{1}}} \right) \Rightarrow 1flens=(1.51)(1R1+1R2)\frac{1}{{{f}_{lens}}}=(1.5-1)\left( \frac{1}{{{R}_{1}}}+\frac{1}{{{R}_{2}}} \right) \Rightarrow 1flens×0.5=1R1+1R2\frac{1}{{{f}_{lens}}\times 0.5}=\frac{1}{{{R}_{1}}}+\frac{1}{{{R}_{2}}} \Rightarrow 2flens=(1R1+1R2)\frac{2}{{{f}_{lens}}}=\left( \frac{1}{{{R}_{1}}}+\frac{1}{{{R}_{2}}} \right) ?(i) Now, the lens is immersed in liquid of refractive index 158\frac{15}{8} then, 1f=(μlensμliquid1)(1R1+1R2)\frac{1}{f}=\left( \frac{{{\mu }_{lens}}}{{{\mu }_{liquid}}}-1 \right)\left( \frac{1}{{{R}_{1}}}+\frac{1}{{{R}_{2}}} \right) \Rightarrow 10.5=(1515/81)(1R1+1R2)-\frac{1}{0.5}=\left( \frac{15}{15/8}-1 \right)\left( \frac{1}{{{R}_{1}}}+\frac{1}{{{R}_{2}}} \right) \Rightarrow 2=(0.81)(1R1+1R2)-2=(0.8-1)\left( \frac{1}{{{R}_{1}}}+\frac{1}{{{R}_{2}}} \right) \Rightarrow 10=(1R1+1R2)10=\left( \frac{1}{{{R}_{1}}}+\frac{1}{{{R}_{2}}} \right) ?(ii) Putting the value of 1R1+1R2\frac{1}{{{R}_{1}}}+\frac{1}{{{R}_{2}}} from E(ii) in E(i) , we get 2flens=1010flens=2flens=0.2m\frac{2}{{{f}_{lens}}}=10\Rightarrow 10{{f}_{lens}}=2\Rightarrow {{f}_{lens}}=0.2\,m