Solveeit Logo

Question

Physics Question on Electromagnetic Field (EMF)

A thin conducting rod MN of mass 20 gm, length 25 cm, and resistance 10 Ī© are held on frictionless, long, perfectly conducting vertical rails as shown in the figure. There is a uniform magnetic field šµ0 = 4 T directed perpendicular to the plane of the rod-rail arrangement. The rod is released from rest at time š‘” = 0 and it moves down along the rails. Assume air drag is negligible. Match each quantity in List-I with an appropriate value from List-II, and choose the correct option.
[Given: The acceleration due to gravity š‘” = 10 m sāˆ’2 and š‘’āˆ’1 = 0.4]

List IList II
(P)At š‘” = 0.2 s, the magnitude of the induced emf in Volt
(Q)At š‘” = 0.2 s, the magnitude of the magnetic force in Newton
(R)At š‘” = 0.2 s, the power dissipated as heat in Watt
(S)The magnitude of terminal velocity of the rod in m sāˆ’1
(5)
A

P→\rightarrow5, Q→\rightarrow2, R→\rightarrow3, S→\rightarrow1

B

P→\rightarrow3, Q→\rightarrow1, R→\rightarrow4, S→\rightarrow5

C

P→\rightarrow4, Q→\rightarrow3, R→\rightarrow1, S→\rightarrow2

D

P→\rightarrow3, Q→\rightarrow4, R→\rightarrow2, S→\rightarrow5

Answer

P→\rightarrow3, Q→\rightarrow4, R→\rightarrow2, S→\rightarrow5

Explanation

Solution

Induced emf = ε=Blv\varepsilon=Blv
Induced current = i=εR=BlvRi=\frac{\varepsilon}{R}=\frac{Blv}{R}
⇒mgāˆ’ilB=ma\Rightarrow mg-ilB=ma
⇒mgāˆ’B2l2vR=mdvdt\Rightarrow mg-\frac{B^2l^2v}{R}=m\frac{dv}{dt}
⇒dvmgāˆ’B2l2vR=dtm\Rightarrow \frac{dv}{mg-\frac{B^2l^2v}{R}}=\frac{dt}{m}
⇒mgāˆ’B2l2vRmg=eāˆ’B2l2mRt\Rightarrow \frac{mg-\frac{B^2l^2v}{R}}{mg}=e^{\frac{-{B^2l^2}}{mR}t}
⇒v=2[1āˆ’eāˆ’5t]\Rightarrow v=2[1-e^{-5t}]
At t = 0.2s, v = 2[1āˆ’1e]2[1-\frac{1}{e}]
⇒ε=BlƗ2[1āˆ’1e]\Rightarrow \varepsilon=Bl\times 2[1-\frac{1}{e}]=1.2 volt.
Magnetic force = ilBilB = 0.12N
The power dissipated = 0.144W
Terminal velocity = 2 m/s