Solveeit Logo

Question

Physics Question on rotational motion

A thin circular disc of mass MM and radius RR is rotating in a horizontal plane about an axis passing through its centre and perpendicular to its plane with angular velocity ω\omega. If another disc of same dimensions but of mass M2\frac{M}{2} is placed gently on the first disc co-axially, then the new angular velocity of the system is:

A

45ω\frac{4}{5}\omega

B

54ω\frac{5}{4}\omega

C

23ω\frac{2}{3}\omega

D

32ω\frac{3}{2}\omega

Answer

23ω\frac{2}{3}\omega

Explanation

Solution

Using the law of conservation of angular momentum:
I1ω=I2ω2.I_1\omega = I_2\omega_2.
The moment of inertia of the first disc:
I1=MR22.I_1 = \frac{MR^2}{2}.
The combined moment of inertia of both discs:
I2=MR22+12(MR22)=3MR24.I_2 = \frac{MR^2}{2} + \frac{1}{2} \left(\frac{MR^2}{2}\right) = \frac{3MR^2}{4}.
Applying conservation of angular momentum:
MR22×ω=3MR24×ω2.\frac{MR^2}{2} \times \omega = \frac{3MR^2}{4} \times \omega_2.
Simplifying:
ω2=MR223MR24×ω=23×ω.\omega_2 = \frac{\frac{MR^2}{2}}{\frac{3MR^2}{4}} \times \omega = \frac{2}{3} \times \omega.
Thus, the new angular velocity of the system is:
ω2=23ω.\omega_2 = \frac{2}{3} \omega.