Solveeit Logo

Question

Physics Question on System of Particles & Rotational Motion

A thin bar of length LL has a mass per unit length λ\lambda, that increases linearly with distance from one end. If its total mass is MM and its mass per unit length at the lighter end is λ0\lambda_{0}, then the distance of the centre of mass from the lighter end is :

A

L2λ0L24M\frac{L}{2} - \frac{\lambda_{0}L^{2}}{4M}

B

L3+λ0L28M\frac{L}{3} + \frac{\lambda_{0}L^{2}}{8M}

C

L3+λ0L24M\frac{L}{3} + \frac{\lambda_{0}L^{2}}{4M}

D

2L3λ0L26M\frac{2L}{3} - \frac{\lambda_{0}L^{2}}{6M}

Answer

2L3λ0L26M\frac{2L}{3} - \frac{\lambda_{0}L^{2}}{6M}

Explanation

Solution

Mass per unit lengh λ0+kx\lambda_{0} + kx
M=0L(λ0+kx)dxM = \int\limits^{L}_{0}\left(\lambda _{0} + kx\right)dx
M=λ0L+K×L22M = \lambda_{0}L + \frac{K\times L^{2}}{2}
2Mλ0LL2=K\frac{2M-\lambda _{0}L }{L^{2}} = K
2ML2λ0L=K\frac{2M}{L^{2}}-\frac{\lambda _{0}}{L} = K
dm(r)dm=(λdn)xM=0L(λ0x+kx2)dxM\frac{\int dm\left(r\right)}{\int dm} = \frac{\int\left(\lambda dn\right)x}{M} = \frac{ \int ^{L}_{0}\left(\lambda _{0}x + kx^{2}\right)dx}{M}
rcm=λ0L+kL22Mr_{cm} = \frac{\lambda_{0}L+\frac{kL^{2}}{2}}{M}
substitute 'k'
rcm=2L3λ026Mr_{cm} = \frac{2L}{3} - \frac{\lambda_{0}\ell^{2}}{6M}