Solveeit Logo

Question

Question: A thick spherical shell carries charge density rho = k * r ^ 2 * (a <= r >= b) . Find the electric f...

A thick spherical shell carries charge density rho = k * r ^ 2 * (a <= r >= b) . Find the electric field in the three regions for the case b = 2a

Answer

The electric field in the three regions is: For r < a: E = 0 For a <= r <= 2a: E = \frac{k}{5\epsilon_0}\left(r^3 - \frac{a^5}{r^2}\right) For r > 2a: E = \frac{31 k a^5}{5 \epsilon_0 r^2}

Explanation

Solution

Solution:

The electric field can be found using Gauss's Law: EdA=Qencϵ0\oint \mathbf{E} \cdot d\mathbf{A} = \frac{Q_{enc}}{\epsilon_0}. Due to spherical symmetry, E\mathbf{E} is radial and its magnitude depends only on rr. Choosing a spherical Gaussian surface of radius rr, we have E(4πr2)=Qencϵ0E(4\pi r^2) = \frac{Q_{enc}}{\epsilon_0}.

The charge density is ρ(r)=kr2\rho(r) = k r^2 for arba \le r \le b, and ρ(r)=0\rho(r) = 0 otherwise. We are given b=2ab = 2a.

Region 1: r<ar < a

For a Gaussian surface with radius r<ar < a, the enclosed charge is Qenc=0rρ(r)4πr2drQ_{enc} = \int_0^r \rho(r') 4\pi r'^2 dr'. Since ρ(r)=0\rho(r') = 0 for r<ar' < a, Qenc=0Q_{enc} = 0.

Applying Gauss's Law: E(4πr2)=0ϵ0    E(r)=0E(4\pi r^2) = \frac{0}{\epsilon_0} \implies E(r) = 0 for r<ar < a.

Region 2: arb=2aa \le r \le b=2a

For a Gaussian surface with radius rr such that ar2aa \le r \le 2a, the enclosed charge is Qenc(r)=0rρ(r)4πr2drQ_{enc}(r) = \int_0^r \rho(r') 4\pi r'^2 dr'.

Qenc(r)=0a04πr2dr+arkr24πr2drQ_{enc}(r) = \int_0^a 0 \cdot 4\pi r'^2 dr' + \int_a^r k r'^2 \cdot 4\pi r'^2 dr'

Qenc(r)=0+4πkarr4dr=4πk[r55]ar=4πk5(r5a5)Q_{enc}(r) = 0 + 4\pi k \int_a^r r'^4 dr' = 4\pi k \left[\frac{r'^5}{5}\right]_a^r = \frac{4\pi k}{5}(r^5 - a^5).

Applying Gauss's Law: E(4πr2)=1ϵ04πk5(r5a5)E(4\pi r^2) = \frac{1}{\epsilon_0} \frac{4\pi k}{5}(r^5 - a^5).

E(r)=14πr2ϵ04πk5(r5a5)=k5ϵ0r2(r5a5)=k5ϵ0(r3a5r2)E(r) = \frac{1}{4\pi r^2 \epsilon_0} \frac{4\pi k}{5}(r^5 - a^5) = \frac{k}{5\epsilon_0 r^2}(r^5 - a^5) = \frac{k}{5\epsilon_0}\left(r^3 - \frac{a^5}{r^2}\right) for ar2aa \le r \le 2a.

Region 3: r>b=2ar > b=2a

For a Gaussian surface with radius r>2ar > 2a, the enclosed charge is the total charge of the shell, QtotalQ_{total}.

Qtotal=abρ(r)4πr2dr=a2akr24πr2drQ_{total} = \int_a^b \rho(r') 4\pi r'^2 dr' = \int_a^{2a} k r'^2 \cdot 4\pi r'^2 dr'

Qtotal=4πka2ar4dr=4πk[r55]a2a=4πk5((2a)5a5)=4πk5(32a5a5)=4πk5(31a5)=124πka55Q_{total} = 4\pi k \int_a^{2a} r'^4 dr' = 4\pi k \left[\frac{r'^5}{5}\right]_a^{2a} = \frac{4\pi k}{5}((2a)^5 - a^5) = \frac{4\pi k}{5}(32a^5 - a^5) = \frac{4\pi k}{5}(31a^5) = \frac{124\pi k a^5}{5}.

Applying Gauss's Law: E(4πr2)=Qtotalϵ0=1ϵ0124πka55E(4\pi r^2) = \frac{Q_{total}}{\epsilon_0} = \frac{1}{\epsilon_0} \frac{124\pi k a^5}{5}.

E(r)=14πr2ϵ0124πka55=31ka55ϵ0r2E(r) = \frac{1}{4\pi r^2 \epsilon_0} \frac{124\pi k a^5}{5} = \frac{31 k a^5}{5 \epsilon_0 r^2} for r>2ar > 2a.

The electric field in the three regions is: For r<ar < a: E(r)=0E(r) = 0 For ar2aa \le r \le 2a: E(r)=k5ϵ0(r3a5r2)E(r) = \frac{k}{5\epsilon_0}\left(r^3 - \frac{a^5}{r^2}\right) For r>2ar > 2a: E(r)=31ka55ϵ0r2E(r) = \frac{31 k a^5}{5 \epsilon_0 r^2}