Question
Question: A thick spherical shell carries charge density rho = k * r ^ 2 * (a <= r >= b) . Find the electric f...
A thick spherical shell carries charge density rho = k * r ^ 2 * (a <= r >= b) . Find the electric field in the three regions for the case b = 2a
The electric field in the three regions is: For r < a: E = 0 For a <= r <= 2a: E = \frac{k}{5\epsilon_0}\left(r^3 - \frac{a^5}{r^2}\right) For r > 2a: E = \frac{31 k a^5}{5 \epsilon_0 r^2}
Solution
Solution:
The electric field can be found using Gauss's Law: ∮E⋅dA=ϵ0Qenc. Due to spherical symmetry, E is radial and its magnitude depends only on r. Choosing a spherical Gaussian surface of radius r, we have E(4πr2)=ϵ0Qenc.
The charge density is ρ(r)=kr2 for a≤r≤b, and ρ(r)=0 otherwise. We are given b=2a.
Region 1: r<a
For a Gaussian surface with radius r<a, the enclosed charge is Qenc=∫0rρ(r′)4πr′2dr′. Since ρ(r′)=0 for r′<a, Qenc=0.
Applying Gauss's Law: E(4πr2)=ϵ00⟹E(r)=0 for r<a.
Region 2: a≤r≤b=2a
For a Gaussian surface with radius r such that a≤r≤2a, the enclosed charge is Qenc(r)=∫0rρ(r′)4πr′2dr′.
Qenc(r)=∫0a0⋅4πr′2dr′+∫arkr′2⋅4πr′2dr′
Qenc(r)=0+4πk∫arr′4dr′=4πk[5r′5]ar=54πk(r5−a5).
Applying Gauss's Law: E(4πr2)=ϵ0154πk(r5−a5).
E(r)=4πr2ϵ0154πk(r5−a5)=5ϵ0r2k(r5−a5)=5ϵ0k(r3−r2a5) for a≤r≤2a.
Region 3: r>b=2a
For a Gaussian surface with radius r>2a, the enclosed charge is the total charge of the shell, Qtotal.
Qtotal=∫abρ(r′)4πr′2dr′=∫a2akr′2⋅4πr′2dr′
Qtotal=4πk∫a2ar′4dr′=4πk[5r′5]a2a=54πk((2a)5−a5)=54πk(32a5−a5)=54πk(31a5)=5124πka5.
Applying Gauss's Law: E(4πr2)=ϵ0Qtotal=ϵ015124πka5.
E(r)=4πr2ϵ015124πka5=5ϵ0r231ka5 for r>2a.
The electric field in the three regions is: For r<a: E(r)=0 For a≤r≤2a: E(r)=5ϵ0k(r3−r2a5) For r>2a: E(r)=5ϵ0r231ka5