Solveeit Logo

Question

Physics Question on Thermal Expansion

A thermocol box has a total wall area (including the lid) of 1.0m21.0 m ^{2} and wall thickness of 3cm3 cm. It is filled with ice at 0C0^{\circ} C. If the average temperature outside the box is 30C30^{\circ} C throughout the day, the amount of ice that melts in one day is [Use Kthermocol =0.03W/mKK_{\text {thermocol }}=0.03 W / mK .Lfusion (ice) =3.00×105J/kg].L_{\text {fusion (ice) }}=3.00 \times 10^{5} J / kg ]

A

1 kg

B

2.88 kg

C

25.92 kg

D

8.64 kg

Answer

8.64 kg

Explanation

Solution

Given,
Total wall area (including the lid) (A)=1.0cm2(A)=1.0\, cm ^{2}
Thickness of wall (1)=3cm=3×102m(1)=3 cm =3 \times 10^{-2} m
Average temperature outside the box =30C=30^{\circ} C
Δθ=300=30C\Delta \theta =30-0=30^{\circ} C
Lfusion (ice) =3×105J/kgL_{\text {fusion (ice) }} =3 \times 10^{5} J / kg
Kthermocol =0.03W/mKK_{\text {thermocol }}=0.03 W / m K
We know that,
Qt=KA1Δθ\frac{Q}{t}=\frac{K A}{1} \Delta \theta
For one day, t=24×60×60st=24 \times 60 \times 60 s
m×Lfusion (ice) t=KA1ΔQ\frac{m \times L_{\text {fusion (ice) }}}{t} =\frac{K A}{1} \Delta Q
m×3×10524×60×60=0.03×13×102×30\frac{m \times 3 \times 10^{5}}{24 \times 60 \times 60} =\frac{0.03 \times 1}{3 \times 10^{-2}} \times 30
m=0.03×1×30×24×60×603×102×3×105m =\frac{0.03 \times 1 \times 30 \times 24 \times 60 \times 60}{3 \times 10^{-2} \times 3 \times 10^{5}}
m=777609000=8.64kgm =\frac{77760}{9000}=8.64 \,kg