Solveeit Logo

Question

Question: (a) The conductivity of \(0.001{\text{ mol }}{{\text{L}}^{ - 1}}\) solution of \({\text{C}}{{\text{H...

(a) The conductivity of 0.001 mol L10.001{\text{ mol }}{{\text{L}}^{ - 1}} solution of CH3COOH{\text{C}}{{\text{H}}_{\text{3}}}{\text{COOH}} is 3.905×105 S cm13.905 \times {10^{ - 5}}{\text{ S c}}{{\text{m}}^{ - 1}}. Calculate its molar conductivity and degree of dissociation.
Given: (H+)=349.6 S cm2 mol1\left( {{{\text{H}}^ + }} \right) = 349.6{\text{ S c}}{{\text{m}}^2}{\text{ mo}}{{\text{l}}^{ - 1}} and (CH3COO)=40.9 S cm2 mol1\left( {{\text{C}}{{\text{H}}_3}{\text{CO}}{{\text{O}}^ - }} \right) = 40.9{\text{ S c}}{{\text{m}}^2}{\text{ mo}}{{\text{l}}^{ - 1}}
(b) Define an electrochemical cell. What happens if external potential applied becomes greater than Ecell{E_{{\text{cell}}}} of electrochemical cells?

Explanation

Solution

The conductance of a unit cube material is known as conductivity. The units of conductivity are S cm1{\text{S c}}{{\text{m}}^{ - 1}} or m1{\text{S }}{{\text{m}}^{ - 1}}. The ratio of conductivity to the molar concentration of the dissolved electrolyte is known as its molar conductivity. The units of molar conductivity are S cm2 mol1{\text{S c}}{{\text{m}}^2}{\text{ mo}}{{\text{l}}^{ - 1}} or m2 mol1{\text{S }}{{\text{m}}^2}{\text{ mo}}{{\text{l}}^{ - 1}}.

Formulae used: Λ=kC\Lambda = \dfrac{k}{C}
Λ=λ0(cation)+λ0(anion)\Rightarrow{\Lambda _ \circ } = {\lambda ^0}\left( {{\text{cation}}} \right) + {\lambda ^0}\left( {{\text{anion}}} \right)
α=ΛΛ\Rightarrow\alpha = \dfrac{\Lambda }{{{\Lambda _ \circ }}}

Complete step by step answer:
Calculate the molar conductivity of solution of CH3COOH{\text{C}}{{\text{H}}_{\text{3}}}{\text{COOH}} using the equation as follows:
Λ=kC\Rightarrow\Lambda = \dfrac{k}{C}
Where Λ\Lambda is the molar conductivity of the solution,
k is the conductivity of the solution,
C is the molar concentration of the solution.

Substitute 3.905×105 S cm13.905 \times {10^{ - 5}}{\text{ S c}}{{\text{m}}^{ - 1}} for the conductivity of the solution, 0.001 mol L10.001{\text{ mol }}{{\text{L}}^{ - 1}} for the molarity of the solution. Thus,
λ=3.905×105 S cm10.001 mol L1\Rightarrow\lambda = \dfrac{{3.905 \times {{10}^{ - 5}}{\text{ S c}}{{\text{m}}^{ - 1}}}}{{0.001{\text{ mol }}{{\text{L}}^{ - 1}}}}
But 1 L=103 cm3{\text{1 L}} = {10^3}{\text{ c}}{{\text{m}}^3}. Thus,
λ=3.905×105 S cm10.001 mol L1×103 cm3L\Rightarrow\lambda = \dfrac{{3.905 \times {{10}^{ - 5}}{\text{ S c}}{{\text{m}}^{ - 1}}}}{{0.001{\text{ mol }}{{\text{L}}^{ - 1}}}} \times \dfrac{{{{10}^3}{\text{ c}}{{\text{m}}^3}}}{{\text{L}}}
λ=39.05 S cm2 mol1\Rightarrow\lambda = 39.05{\text{ S c}}{{\text{m}}^2}{\text{ mo}}{{\text{l}}^{ - 1}}
Thus, the molar conductivity of solution of CH3COOH{\text{C}}{{\text{H}}_{\text{3}}}{\text{COOH}} is 39.05 S cm2 mol139.05{\text{ S c}}{{\text{m}}^2}{\text{ mo}}{{\text{l}}^{ - 1}}.

Calculate the molar conductivity of solution of CH3COOH{\text{C}}{{\text{H}}_{\text{3}}}{\text{COOH}} at infinite dilution using the Kohlrausch law as follows:
Kohlrausch law states that at infinite dilution, each ion migrates independently of its co-ion and makes its contribution to the total molar conductivity. Thus,
Λ(CH3COOH)=λ0(H+)+λ0(CH3COO)\Rightarrow{\Lambda _ \circ }\left( {{\text{C}}{{\text{H}}_3}{\text{COOH}}} \right) = {\lambda ^0}\left( {{{\text{H}}^ + }} \right) + {\lambda ^0}\left( {{\text{C}}{{\text{H}}_3}{\text{CO}}{{\text{O}}^ - }} \right)
Where, Λ(CH3COOH){\Lambda _ \circ }\left( {{\text{C}}{{\text{H}}_3}{\text{COOH}}} \right) is the molar conductivity of methanoic acid at infinite dilution,
λ0(H+){\lambda ^0}\left( {{{\text{H}}^ + }} \right) is the molar conductivity of H+{{\text{H}}^ + } ion at infinite dilution,
λ0(CH3COO){\lambda ^0}\left( {{\text{C}}{{\text{H}}_3}{\text{CO}}{{\text{O}}^ - }} \right) is the molar conductivity of CH3COO{\text{C}}{{\text{H}}_3}{\text{CO}}{{\text{O}}^ - } ion at infinite dilution.

Substitute 349.5 S cm2 mol1349.5{\text{ S c}}{{\text{m}}^2}{\text{ mo}}{{\text{l}}^{ - 1}} for the molar conductivity of H+{{\text{H}}^ + } ion at infinite dilution, 40.9 S cm2 mol140.9{\text{ S c}}{{\text{m}}^2}{\text{ mo}}{{\text{l}}^{ - 1}} for the molar conductivity of CH3COO\Rightarrow{\text{C}}{{\text{H}}_3}{\text{CO}}{{\text{O}}^ - } ion at infinite dilution. Thus,
Λ(CH3COOH)=(349.5+40.9) S cm2 mol1\Rightarrow{\Lambda _ \circ }\left( {{\text{C}}{{\text{H}}_3}{\text{COOH}}} \right) = \left( {349.5 + 40.9} \right){\text{ S c}}{{\text{m}}^2}{\text{ mo}}{{\text{l}}^{ - 1}}
Λ(CH3COOH)=390.4 S cm2 mol1{\Rightarrow\Lambda _ \circ }\left( {{\text{C}}{{\text{H}}_3}{\text{COOH}}} \right) = 390.4{\text{ S c}}{{\text{m}}^2}{\text{ mo}}{{\text{l}}^{ - 1}}
Thus, molar conductivity of solution of CH3COOH{\text{C}}{{\text{H}}_{\text{3}}}{\text{COOH}} at infinite dilution is 390.4 S cm2 mol1390.4{\text{ S c}}{{\text{m}}^2}{\text{ mo}}{{\text{l}}^{ - 1}}.

Calculate the degree of dissociation of solution of CH3COOH{\text{C}}{{\text{H}}_{\text{3}}}{\text{COOH}} using the equation as follows:
The degree of dissociation of a weak electrolyte is the ratio of its molar conductivity to its molar conductivity at infinite dilution. Thus,
α=ΛΛ\alpha = \dfrac{\Lambda }{{{\Lambda _ \circ }}}
Where α\alpha is the degree of dissociation,
Λ\Rightarrow\Lambda is the molar conductivity of the solution,
Λ{\Lambda _ \circ } is the molar conductivity at infinite dilution,
Substitute 39.05 S cm2 mol139.05{\text{ S c}}{{\text{m}}^2}{\text{ mo}}{{\text{l}}^{ - 1}} for the molar conductivity, 390.4 S cm2 mol1390.4{\text{ S c}}{{\text{m}}^2}{\text{ mo}}{{\text{l}}^{ - 1}} for the molar conductivity at infinite dilution. Thus,
α=39.05 S cm2 mol1390.4 S cm2 mol1\Rightarrow\alpha = \dfrac{{39.05{\text{ S c}}{{\text{m}}^2}{\text{ mo}}{{\text{l}}^{ - 1}}}}{{390.4{\text{ S c}}{{\text{m}}^2}{\text{ mo}}{{\text{l}}^{ - 1}}}}
α=0.100\Rightarrow\alpha = 0.100
Thus, the degree of dissociation of solution of CH3COOH{\text{C}}{{\text{H}}_{\text{3}}}{\text{COOH}} is 0.100.

(b) A device used for the production of electricity using the energy released in a spontaneous chemical reaction is known as an electrochemical cell.
If external potential applied becomes greater than Ecell{E_{{\text{cell}}}} of electrochemical cells the reaction gets reversed.

Note: The conducting power of all the ions that are produced by dissolving one mole of any electrolyte in the solution is known as the molar conductivity of the solution.
As the temperature of the solution increases, the molar conductivity of the solution increases. This is because as the temperature increases the interaction and the mobility of the ions in the solution increases.
The molar conductivity of both strong and weak electrolytes increases as the dilution increases. This is because dilution increases the degree of dissociation and the total number of ions that carry current increases.