Solveeit Logo

Question

Question: A \[{\text{NX}}\] is produced by the following step reactions 1\. \({\text{M}} + {{\text{X}}_2} \t...

A NX{\text{NX}} is produced by the following step reactions
1. M+X2MX2{\text{M}} + {{\text{X}}_2} \to {\text{M}}{{\text{X}}_2}
2. MX2+X2M3X8{\text{M}}{{\text{X}}_2} + {{\text{X}}_2} \to {{\text{M}}_3}{{\text{X}}_8}
3. M3X8+N2CO3NX+CO2+M3O4{{\text{M}}_3}{{\text{X}}_8} + {{\text{N}}_2}{\text{C}}{{\text{O}}_3} \to {\text{NX}} + {\text{C}}{{\text{O}}_2} + {{\text{M}}_3}{{\text{O}}_4}
How much M{\text{M}} (metal) is consumed to produce 206 gm206{\text{ gm}} of NX{\text{NX}}. (Take at wt of M=56{\text{M}} = 56, N=23{\text{N}} = 23, X=80{\text{X}} = 80)
a. 336 gm336{\text{ gm}}
b. 56 gm56{\text{ gm}}
c. 143 gm\dfrac{{14}}{3}{\text{ gm}}
d. 74 gm\dfrac{7}{4}{\text{ gm}}

Explanation

Solution

We have to calculate the mass of M{\text{M}} (metal) consumed to produce 206 gm206{\text{ gm}} of NX{\text{NX}}. To solve this calculate the mole ratio of M{\text{M}} (metal) and NX{\text{NX}}. Calculate the number of moles of both M{\text{M}} (metal) and NX{\text{NX}} by taking the given mass the molar mass.

Formula Used: Number of moles(mol)=Mass(gm)Molar mass(gm/mol){\text{Number of moles}}\left( {{\text{mol}}} \right) = \dfrac{{{\text{Mass}}\left( {{\text{gm}}} \right)}}{{{\text{Molar mass}}\left( {{\text{gm/mol}}} \right)}}

Complete answer:
First we have to determine a balanced chemical equation which gives the stoichiometry between M{\text{M}} (metal) and NX{\text{NX}}.
We are given three equations as follows:
M+X2MX2{\text{M}} + {{\text{X}}_2} \to {\text{M}}{{\text{X}}_2} …… (1)
MX2+X2M3X8{\text{M}}{{\text{X}}_2} + {{\text{X}}_2} \to {{\text{M}}_3}{{\text{X}}_8} …… (2)
M3X8+N2CO3NX+CO2+M3O4{{\text{M}}_3}{{\text{X}}_8} + {{\text{N}}_2}{\text{C}}{{\text{O}}_3} \to {\text{NX}} + {\text{C}}{{\text{O}}_2} + {{\text{M}}_3}{{\text{O}}_4} …… (3)
Multiply equation (1) by 3. Thus,
3M+3X23MX2{\text{3M}} + 3{{\text{X}}_2} \to 3{\text{M}}{{\text{X}}_2} …… (4)
Balance the equation (2) by changing the coefficient of MX2{\text{M}}{{\text{X}}_2} to 3. Thus,
3MX2+X2M3X8{\text{3M}}{{\text{X}}_2} + {{\text{X}}_2} \to {{\text{M}}_3}{{\text{X}}_8} …… (5)
Add equation (4), equation (5) and equation (3). Thus,
3M+43X2+N2CO3NX+CO2+M3O4{\text{3M}} + 43{{\text{X}}_2} + {{\text{N}}_2}{\text{C}}{{\text{O}}_3} \to {\text{NX}} + {\text{C}}{{\text{O}}_2} + {{\text{M}}_3}{{\text{O}}_4} …… (6)
Now, calculate the molar mass of NX{\text{NX}} from the given atomic weights. Thus,
Molar mass of NX{\text{NX}} =23+80 = 23 + 80
Molar mass of NX{\text{NX}} =103 gm/mol = 103{\text{ gm/mol}}
Thus, the molar mass of NX{\text{NX}} is 103 gm/mol103{\text{ gm/mol}}.
Now, calculate the number of moles of NX{\text{NX}} using the equation as follows:
Number of moles(mol)=Mass(gm)Molar mass(gm/mol){\text{Number of moles}}\left( {{\text{mol}}} \right) = \dfrac{{{\text{Mass}}\left( {{\text{gm}}} \right)}}{{{\text{Molar mass}}\left( {{\text{gm/mol}}} \right)}}
We are given that 206 gm206{\text{ gm}} of NX{\text{NX}} is produced. i.e. the mass of NX{\text{NX}} is 206 gm206{\text{ gm}}. And the molar mass of NX{\text{NX}} is 103 gm/mol103{\text{ gm/mol}}. Thus,
Number of moles of NX=206 gm103 gm/mol{\text{Number of moles of NX}} = \dfrac{{206{\text{ gm}}}}{{103{\text{ gm/mol}}}}
Number of moles of NX=2 mol{\text{Number of moles of NX}} = 2{\text{ mol}}
Thus, the number of moles of NX{\text{NX}} are 2 mol2{\text{ mol}}.
From equation (6), we can see that the mole ratio of M{\text{M}} (metal) and NX{\text{NX}} is 3:13:1. i.e. three moles of M{\text{M}} (metal) are required to produce one mole of NX{\text{NX}}. But the number of moles of NX{\text{NX}} are 2 mol2{\text{ mol}}.
Thus, to produce 2 mol2{\text{ mol}} of NX{\text{NX}}, 6 mol6{\text{ mol}} of M{\text{M}} (metal) are required.
Now, we will calculate the mass of M{\text{M}} (metal) using the equation as follows:
Number of moles(mol)=Mass(gm)Molar mass(gm/mol){\text{Number of moles}}\left( {{\text{mol}}} \right) = \dfrac{{{\text{Mass}}\left( {{\text{gm}}} \right)}}{{{\text{Molar mass}}\left( {{\text{gm/mol}}} \right)}}
Mass(gm)=Number of moles(mol)×Molar mass(gm/mol){\text{Mass}}\left( {{\text{gm}}} \right) = {\text{Number of moles}}\left( {{\text{mol}}} \right) \times {\text{Molar mass}}\left( {{\text{gm/mol}}} \right)
We are given that the atomic mass of M{\text{M}} (metal) is 56 gm/mol56{\text{ gm/mol}}. And 6 mol6{\text{ mol}} of M{\text{M}} (metal) are required. Thus,
Mass=6 mol×56 gm/mol{\text{Mass}} = 6{\text{ mol}} \times 56{\text{ gm/mol}}
Mass=336 gm{\text{Mass}} = 336{\text{ gm}}
Thus, the mass of M{\text{M}} (metal) consumed to produce 206 gm206{\text{ gm}} of NX{\text{NX}} is 336 gm336{\text{ gm}}.

**Thus, the correct option is (a) 336 gm336{\text{ gm}}.

Note:**
Remember to balance the equations correctly. Unbalanced equations can lead to wrong mole ratios leading to wrong answers. The molar mass of NX{\text{NX}} can be calculated using the given atomic weights.