Solveeit Logo

Question

Question: A \({\text{0}}{\text{.6 ml}}\) of glacial acetic acid with density \({\text{1}}{\text{.06 gm }}{{\te...

A 0.6 ml{\text{0}}{\text{.6 ml}} of glacial acetic acid with density 1.06 gm L - 1{\text{1}}{\text{.06 gm }}{{\text{L}}^{{\text{ - 1}}}} is dissolved in 1kg{\text{1kg}} water and solution froze at  - 0.0205oC{\text{ - 0}}{{.0205^oC}}. Calculate van’t hoff factor and Kf{{\text{K}}_{\text{f}}} for water is 1.86 K Kg mol - 1{\text{1}}{\text{.86 K Kg mo}}{{\text{l}}^{{\text{ - 1}}}} ?
(A)2.103{\text{2}}{\text{.103}}
(B)2.36{\text{2}}{\text{.36}}
(C)1.041{\text{1}}{\text{.041}}
(D)None of these.

Explanation

Solution

Density is the ratio of mass of solution and volume of solution. By introducing the density and volume we can find the mass of solute easily. Then after finding moles from the mass of the solute we find the depression in freezing point.

Complete step by step answer:
From the given question above we collected the data that,
Volume of solute = 0.6 ml{\text{Volume of solute = 0}}{\text{.6 ml}}
Density of solute = 1.06 g ml - 1{\text{Density of solute = 1}}{\text{.06 g m}}{{\text{l}}^{{\text{ - 1}}}}
mass of solute = density X volume{\text{mass of solute = density X volume}}
=0.6ml×1.06 g ml - 1{{ = 0}}{{.6ml \times 1}}{\text{.06 g m}}{{\text{l}}^{{\text{ - 1}}}}
 = 0.636 gm{\text{ = 0}}{\text{.636 gm}}
molecular mass of solute = 60 gm mol - 1{\text{molecular mass of solute = 60 gm mo}}{{\text{l}}^{{\text{ - 1}}}}
moles of solute = mass of solutemolecular mass of solute{\text{moles of solute = }}\dfrac{{{\text{mass of solute}}}}{{{\text{molecular mass of solute}}}}
{\text{moles of solute = }}\dfrac{{{\text{0}}{\text{.636 gm}}}}{{{\text{60 gm mo}}{{\text{l}}^{{\text{ - 1}}}}}}$$${\text{ = 0}}{\text{.0106 mol}}$ ${\text{molality = }}\dfrac{{{\text{number of moles}}}}{{{\text{mass of solvent (kg)}}}}$ = \dfrac{{0.0106}}{1}$$=0.0106 = 0.0106
Depression in freezing point = Kf×m{\text{Depression in freezing point = }}{{\text{K}}_{\text{f}}}{{ \times m}}
 = 1.86 K Kg mol - 1×0.0106 Kg mol - 1{\text{ = 1}}{\text{.86 K Kg mo}}{{\text{l}}^{{\text{ - 1}}}}{{ \times 0}}{\text{.0106 Kg mo}}{{\text{l}}^{{\text{ - 1}}}}
 = 0.01971 K{\text{ = 0}}{\text{.01971 K}}
Van’t Hoff = observed depression in freezing pointnormal depression in freezing point{\text{Van't Hoff = }}\dfrac{{{\text{observed depression in freezing point}}}}{{{\text{normal depression in freezing point}}}}
 = 0.0205K0.01971K = 1.0400{\text{ = }}\dfrac{{{\text{0}}{\text{.0205K}}}}{{{\text{0}}{\text{.01971K}}}}{\text{ = 1}}{\text{.0400}}
Therefore, the correct option is (3).

Additional information:
-Van't Hoff factor is a calculative value of the effect of a solute on various colligative properties of the solution like relative lowering of the vapor pressure, the osmotic pressure, depression in the freezing point and the elevation in the boiling point of the solution.
-Molality is the property of a solution and it defines the number of moles of solute per kilogram of the solvent.
-We should be careful with the molarity and the molality a we might get confused between the two
-Molarity is the number of moles in a liter of solution while molality is the number of moles in a kilogram of solvent. The units are of huge difference.

Note: Special attention should be paid while converting the volume of the solution in mass. The units of density should be converted in the units of volume itself to avoid further difference in answer.