Solveeit Logo

Question

Question: A tetrahedron has vertices at O(0, 0, 0), A(1, 2, 1), B(2, 1, 3) and C(–1, 1, 2). Then the angle bet...

A tetrahedron has vertices at O(0, 0, 0), A(1, 2, 1), B(2, 1, 3) and C(–1, 1, 2). Then the angle between the faces OAB and ABC will be

A

cos1(1935)\cos ^ { - 1 } \left( \frac { 19 } { 35 } \right)

B

cos1(1731)\cos ^ { - 1 } \left( \frac { 17 } { 31 } \right)

C

300

D

900

Answer

cos1(1935)\cos ^ { - 1 } \left( \frac { 19 } { 35 } \right)

Explanation

Solution

Angle between two plane faces is equal to the angle between the normals n1n _ { 1 } and n2n _ { 2 } to the planes. n1\mathrm { n } _ { 1 }, the normal to the face OAB is given by ……(i)

, the normal to the face ABC, is given by AB×AC\overrightarrow { A B } \times \overrightarrow { A C }.

n2=ijk112211=i5j3k\mathbf { n } _ { 2 } = \left| \begin{array} { c c c } \mathbf { i } & \mathbf { j } & \mathbf { k } \\ 1 & - 1 & 2 \\ - 2 & - 1 & 1 \end{array} \right| = \mathbf { i } - 5 \mathbf { j } - 3 \mathbf { k } ……(ii)

If θ be the angle between n1\mathbf { n } _ { 1 } and n2\mathbf { n } _ { 2 } ,

Then cosθ=1935\cos \theta = \frac { 19 } { 35 }

θ=cos1(1935)\theta = \cos ^ { - 1 } \left( \frac { 19 } { 35 } \right).