Solveeit Logo

Question

Mathematics Question on Straight lines

A tetrahedron has vertices at O(0,0,0),A(1,2,1)B(2,1,3)O (0, 0, 0), A (1, 2, 1) B (2, 1, 3) and C(1,1,2)C (-1, 1, 2). Then the angle between the faces OABOAB and ABCABC will be

A

120120^{\circ}

B

cos1(1731)\cos^{-1} \left( \frac{17}{31}\right)

C

3030^{\circ}

D

9090^{\circ}

Answer

120120^{\circ}

Explanation

Solution

AO=i^+2j^+k^\overrightarrow{AO} = \hat{i} + 2 \hat{j} + \hat{k} AC=2i^j^+k^\overrightarrow{AC} = - 2 \hat{i} - \hat{j} + \hat{k} Angle between faces OAB and ABC = Angle between AO\overrightarrow{AO} and AC \overrightarrow{AC} If Q be the angle between AO\overrightarrow{AO} and AC \overrightarrow{AC} then cosθ=AOACAOAC\cos \theta = \frac{ \overrightarrow{AO} \overrightarrow{AC} } {|\overrightarrow{AO}||\overrightarrow{AC}|} =1×(2)+2×(1)+1×11+4+14+1+1=36= \frac{1 \times (-2) + 2 \times (-1) + 1 \times 1}{\sqrt{1 + 4 + 1} \sqrt{4 + 1 + 1}} = \frac{-3}{6} =12=cos120 = - \frac{1}{2} = \cos \, 120^{\circ} θ=120\therefore \, \, \theta = 120^{\circ}