Solveeit Logo

Question

Question: A tetrahedron has vertices at \(O ( 0,0,0 )\), \(A ( 1,2,1 ) , B ( 2,1,3 )\) and \(C ( - 1,1,2 )\) ...

A tetrahedron has vertices at O(0,0,0)O ( 0,0,0 ), A(1,2,1),B(2,1,3)A ( 1,2,1 ) , B ( 2,1,3 ) and C(1,1,2)C ( - 1,1,2 ) . Then the angle between the faces OABO A B and ABCA B Cwill be

A

cos1(1935)\cos ^ { - 1 } \left( \frac { 19 } { 35 } \right)

B

cos1(1731)\cos ^ { - 1 } \left( \frac { 17 } { 31 } \right)

C

3030 ^ { \circ }

D

9090 ^ { \circ }

Answer

cos1(1935)\cos ^ { - 1 } \left( \frac { 19 } { 35 } \right)

Explanation

Solution

Angle between two plane faces is equal to the angle between the normals n1\mathbf { n } _ { 1 } and n2\mathbf { n } _ { 2 } to the planes. n1\mathbf { n } _ { 1 } the normal of face OAB is given by

OA×OB=ijk121213=5ij3k\overrightarrow { O A } \times \overrightarrow { O B } = \left| \begin{array} { c c c } \mathbf { i } & \mathbf { j } & \mathbf { k } \\ 1 & 2 & 1 \\ 2 & 1 & 3 \end{array} \right| = 5 \mathbf { i } - \mathbf { j } - 3 \mathbf { k } .....(i)

n2\mathbf { n } _ { 2 } the normal of face ABC is given by AB×AC\overrightarrow { A B } \times \overrightarrow { A C } 21,12,312 - 1,1 - 2,3 - 1 and 11,12,21- 1 - 1,1 - 2,2 - 1i.e., 1,1,21 , - 1,2 and 2,1,1- 2 , - 1,1

…..(ii)

If θ be the angle between n1\mathbf { n } _ { 1 } and n2\mathbf { n } _ { 2 }, then

θ=cos1(1935)\Rightarrow \theta = \cos ^ { - 1 } \left( \frac { 19 } { 35 } \right).