Solveeit Logo

Question

Question: A tension of 22N is applied to a copper wire of cross-sectional area \(0.02c{m^2}\). Young’s modulus...

A tension of 22N is applied to a copper wire of cross-sectional area 0.02cm20.02c{m^2}. Young’s modulus of copper 11×1011Nm21 \cdot 1 \times {10^{11}}\dfrac{N}{{{m^2}}} and Poisson’s ratio is 0.32. The decrease in cross sectional area will be:
A) 128×106cm21 \cdot 28 \times {10^{ - 6}}c{m^2}.
B) 16×106cm21 \cdot 6 \times {10^{ - 6}}c{m^2}.
C) 256×106cm22 \cdot 56 \times {10^{ - 6}}c{m^2}.
D) 064×106cm20 \cdot 64 \times {10^{ - 6}}c{m^2}.

Explanation

Solution

Young’s modulus is defined as the ratio of the longitudinal stress to the strain. The young’s modulus also gives the idea about the strength of any material. Poisson’s ratio is the term which comes when there is expansion of material in the perpendicular direction of the applied force and it is the ratio of the lateral strain to longitudinal strain.

Formula used: The formula used for the Young’s modulus is given by,Young’s modulus=stressstrain=(FA)(Δll){\text{Young's modulus}} = \dfrac{{{\text{stress}}}}{{{\text{strain}}}} = \dfrac{{\left( {\dfrac{F}{A}} \right)}}{{\left( {\dfrac{{\Delta l}}{l}} \right)}}
Also the formula for the Poisson’s ratio is given bypoisson’s ratio(μ) = lateral strainlongitudinal strain=εlateralεaxial{\text{poisson's ratio}}\left( \mu \right){\text{ = }} - \dfrac{{{\text{lateral strain}}}}{{{\text{longitudinal strain}}}} = - \dfrac{{{\varepsilon _{lateral}}}}{{{\varepsilon _{axial}}}}.

Complete step by step solution:
Here it is given that the Young’s modulus is given by, Y=FlAΔlY = \dfrac{{Fl}}{{A\Delta l}} and also we know that the Poisson’s ratio is μ=(Δrr)(Δll)\mu = \dfrac{{\left( {\dfrac{{\Delta r}}{r}} \right)}}{{\left( {\dfrac{{\Delta l}}{l}} \right)}}.

Rearranging the terms we get,

σ=(Δrr)(Δll)\sigma = \dfrac{{\left( {\dfrac{{\Delta r}}{r}} \right)}}{{\left( {\dfrac{{\Delta l}}{l}} \right)}}
Δll=(1σ)(Δrr)\dfrac{{\Delta l}}{l} = \left( {\dfrac{1}{\sigma }} \right) \cdot \left( {\dfrac{{\Delta r}}{r}} \right)………eq. (1)

Replace the value of equation (1) in the formula of Young’s modulus.

Y=(FA)lΔl \Rightarrow Y = \dfrac{{\left( {\dfrac{F}{A}} \right) \cdot l}}{{\Delta l}}
Y=σ(Δll)\Rightarrow Y = \dfrac{\sigma }{{\left( {\dfrac{{\Delta l}}{l}} \right)}}

Where σ\sigma is the stress.

Replace the value of Δll=(1σ)(Δrr)\dfrac{{\Delta l}}{l} = \left( {\dfrac{1}{\sigma }} \right) \cdot \left( {\dfrac{{\Delta r}}{r}} \right).

Y=σ(Δll) \Rightarrow Y = \dfrac{\sigma }{{\left( {\dfrac{{\Delta l}}{l}} \right)}}
Y=σ[(1μ)(Δrr)]\Rightarrow Y = \dfrac{\sigma }{{\left[ {\left( {\dfrac{1}{\mu }} \right) \cdot \left( {\dfrac{{\Delta r}}{r}} \right)} \right]}}
Δrr=μσY\Rightarrow \dfrac{{\Delta r}}{r} = \dfrac{{\mu \cdot \sigma }}{Y}

Put the value force, Poisson’s ratio, area of cross section and Young’s modulus in the above formula.

Δrr=μσY \Rightarrow \dfrac{{\Delta r}}{r} = \dfrac{{\mu \cdot \sigma }}{Y}
Δrr=[0.32×(220.02×104)1.1×1011]\Rightarrow \dfrac{{\Delta r}}{r} = \left[ {\dfrac{{0.32 \times \left( {\dfrac{{22}}{{0.02 \times {{10}^{ - 4}}}}} \right)}}{{1.1 \times {{10}^{11}}}}} \right]
Δrr=32×106\Rightarrow \dfrac{{\Delta r}}{r} = 32 \times {10^{ - 6}}………eq. (2)

The area of the cross section is given by A=πr2A = \pi {r^2} and alsoΔA=2πrΔr\Delta A = 2\pi r\Delta r.

Let us calculateΔAA\dfrac{{\Delta A}}{A}.

ΔAA=2πrΔrπr2 \Rightarrow \dfrac{{\Delta A}}{A} = \dfrac{{2\pi r\Delta r}}{{\pi {r^2}}}
ΔAA=2Δrr\Rightarrow \dfrac{{\Delta A}}{A} = \dfrac{{2\Delta r}}{r}………eq. (3)

Put the value of Δrr\dfrac{{\Delta r}}{r} from equation (2) to equation (3).

ΔAA=2Δrr \Rightarrow \dfrac{{\Delta A}}{A} = \dfrac{{2\Delta r}}{r}
ΔAA=2(32×106)\Rightarrow \dfrac{{\Delta A}}{A} = 2 \cdot \left( {32 \times {{10}^{ - 6}}} \right)
ΔA=A(64×106)\Rightarrow \Delta A = A \cdot \left( {64 \times {{10}^{ - 6}}} \right)
ΔA=0.02×64×106\Rightarrow \Delta A = 0.02 \times 64 \times {10^{ - 6}}
ΔA=1.28×106cm2\Rightarrow \Delta A = 1.28 \times {10^{ - 6}}c{m^2}

So the correct answer for this problem is option A.

Note: The students should remember the formula and concept of the young’s modulus as it can help in solving such problems also should students remember the concept of the Poisson’s ratio because the problem where there is expansion of the material takes place in the perpendicular direction of the applied force the concept of Poisson’s ratio should be used.