Solveeit Logo

Question

Physics Question on Ray optics and optical instruments

A telescope has an objective lens of focal length 200cm200\, cm and an eye piece with focal length 2cm2\, cm. If this telescope is used to see a 50m50\, m tall building at a distance of 2km2\, km, what is the height of the image of the building formed by the objective lens?

A

5 cm

B

10 cm

C

1 cm

D

2 cm

Answer

5 cm

Explanation

Solution

A telescope is an optical instrument used to see distant objects. Since, convex lens is used, from lens formula we have 1fo=1vo1uo\frac{1}{f_{o}}=\frac{1}{v_{o}}-\frac{1}{u_{o}} where vov_{o} and uou_{o} are image and object distance respectively. 1vo=1fo+1uo\therefore \quad \frac{1}{v_{o}}=\frac{1}{f_{o}}+\frac{1}{u_{o}} Given, fo=200cmf_{o}=200\, cm uo=2km=2×105cmu_{o} =-2\, km =-2 \times 10^{5} cm O=50m=5×103cmO =50\, m =5 \times 10^{3} cm 1vo=1200+1200×103\therefore \frac{1}{v_{o}} =\frac{1}{200}+\frac{1}{-200 \times 10^{3}} =1031200×103=\frac{10^{3}-1}{200 \times 10^{3}} vo=200×103999cm\Rightarrow v_{o}=\frac{200 \times 10^{3}}{999} cm Also magnification m=vouo=IOm=\left|\frac{v_{o}}{u_{o}}\right|=\frac{I}{O} 200×103999×200×103=I5×103\therefore \frac{200 \times 10^{3}}{999 \times 200 \times 10^{3}}=\frac{I}{5 \times 10^{3}} I=5×103999=5cm\Rightarrow I=\frac{5 \times 10^{3}}{999}=5\, cm