Solveeit Logo

Question

Question: A tangent to the parabola\({{y}^{2}}=4ax\)meets the axes at A and B. The locus of midpoint of AB is:...

A tangent to the parabolay2=4ax{{y}^{2}}=4axmeets the axes at A and B. The locus of midpoint of AB is:
a) y2+2ax=0{{y}^{2}}+2ax=0
b) y22ax=0{{y}^{2}}-2ax=0
c) y2+ax=0{{y}^{2}}+ax=0
d) 2y2+ax=02{{y}^{2}}+ax=0

Explanation

Solution

Hint: Write the equation of the tangent on the parabola y2=4ax{{y}^{2}}=4ax at a parametric point (at2,2at)\left( a{{t}^{2}},2at \right) .Then find the points on x and y axis where this tangent is intersecting. The intersecting points will be A and B then find the midpoint of A and B.

Complete step-by-step answer:
Let us take a parametric point (at2,2at)\left( a{{t}^{2}},2at \right) which lie on the parabola y2=4ax{{y}^{2}}=4ax then we are going to write the equation of a tangent at this parametric point.
The slope of the tangent of the parabola y2=4ax{{y}^{2}}=4ax is calculated below:
y2=4ax{{y}^{2}}=4ax
Taking derivative with respect to x on both the sides will get:
2ydydx=4a dydx=2ay \begin{aligned} & 2y\dfrac{dy}{dx}=4a \\\ & \Rightarrow \dfrac{dy}{dx}=\dfrac{2a}{y} \\\ \end{aligned}
Now, substituting the parametric point (at2,2at)\left( a{{t}^{2}},2at \right) in the above equation we get the slope as:
dydx=(2a2at) dydx=1t \begin{aligned} & \dfrac{dy}{dx}=\left( \dfrac{2a}{2at} \right) \\\ & \Rightarrow \dfrac{dy}{dx}=\dfrac{1}{t} \\\ \end{aligned}
The equation of a tangent at the parametric point with the slope 1t\dfrac{1}{t} is:
y2at=1t(xat2)y-2at=\dfrac{1}{t}\left( x-a{{t}^{2}} \right)
When the above equation cut x axis then y = 0 and the coordinate of x is:
02at=1t(xat2) 2at2=xat2 x=at2 \begin{aligned} & 0-2at=\dfrac{1}{t}\left( x-a{{t}^{2}} \right) \\\ & \Rightarrow -2a{{t}^{2}}=x-a{{t}^{2}} \\\ & \Rightarrow x=-a{{t}^{2}} \\\ \end{aligned}
When the above equation cut y axis then x = 0 and the coordinate of y is:
y2at=1t(0at2) y=2atat y=at \begin{aligned} & y-2at=\dfrac{1}{t}\left( 0-a{{t}^{2}} \right) \\\ & \Rightarrow y=2at-at \\\ & \Rightarrow y=at \\\ \end{aligned}
From the above calculations, coordinates of A(at2,0)A\left( -a{{t}^{2}},0 \right) and B(0,at)B\left( 0,at \right) .
What we have described above is shown through the below diagram:

In the above figure, you can see a parabola y2=4ax{{y}^{2}}=4ax on which a tangent is drawn at point P(at2,2at)P\left( a{{t}^{2}},2at \right) and the tangent intersects X and Y axis at A(at2,0)A\left( -a{{t}^{2}},0 \right) and B(0,at)B\left( 0,at \right) respectively.
The x and y coordinates of the midpoint of A and B is equal to:
(at22,at2)\left( -\dfrac{a{{t}^{2}}}{2},\dfrac{at}{2} \right)
So, from the above expression x=at22x=-\dfrac{a{{t}^{2}}}{2} and y=at2y=\dfrac{at}{2} .
y=at2y=\dfrac{at}{2}
Squaring both the sides will give:
y2=a2t24 4y2=a2t2 t2=4y2a2 \begin{aligned} & {{y}^{2}}=\dfrac{{{a}^{2}}{{t}^{2}}}{4} \\\ & \Rightarrow 4{{y}^{2}}={{a}^{2}}{{t}^{2}} \\\ & \Rightarrow {{t}^{2}}=\dfrac{4{{y}^{2}}}{{{a}^{2}}} \\\ \end{aligned}
Substituting the value of t2{{t}^{2}} in x=at22x=-\dfrac{a{{t}^{2}}}{2} we get,
x=a(4y2a2)2 2ax=4y2 2y2+ax=0 \begin{aligned} & x=-\dfrac{a\left( \dfrac{4{{y}^{2}}}{{{a}^{2}}} \right)}{2} \\\ & \Rightarrow -2ax=4{{y}^{2}} \\\ & \Rightarrow 2{{y}^{2}}+ax=0 \\\ \end{aligned}
Hence, the locus of the midpoint of A and B is 2y2+ax=02{{y}^{2}}+ax=0 .
Hence, the correct option is (d).

Note: The locus of a point is a relation between x and y which is holding one or more conditions like we have to find the locus of a midpoint of A and B.