Solveeit Logo

Question

Question: A tangent to the parabola \({{x}^{2}}+4ay=0\) cuts the parabola \({{x}^{2}}=4by\), at A and B the lo...

A tangent to the parabola x2+4ay=0{{x}^{2}}+4ay=0 cuts the parabola x2=4by{{x}^{2}}=4by, at A and B the locus of the midpoint of AB is
(a) (a+2b)x2=4b2y\left( a+2b \right){{x}^{2}}=4{{b}^{2}}y
(b) (b+2a)x2=4b2y\left( b+2a \right){{x}^{2}}=4{{b}^{2}}y
(c) (a+2b)y2=4b2x\left( a+2b \right){{y}^{2}}=4{{b}^{2}}x
(d) (b+2a)x2=4a2y\left( b+2a \right){{x}^{2}}=4{{a}^{2}}y

Explanation

Solution

Hint: Write equation of tangent on the parabola x2+4ay=0{{x}^{2}}+4ay=0. And find the intersection of tangent and the parabola x2=4by{{x}^{2}}=4by. Don’t calculate the exact coordinates. Try to use the equation to get locus of the mid-points of A and B.

Complete step-by-step answer:
Let us suppose a parametric coordinate on parabola x2+4ay=0{{x}^{2}}+4ay=0 as (2at,at2)\left( 2at,-a{{t}^{2}} \right).
Now, we can write the equation of tangent through this point by T=0.
If (x1,y1)\left( {{x}_{1,}}{{y}_{1}} \right)is a point on parabola, x2=4ay{{x}^{2}}=-4ay, then tangent through it is given as
xx1=4a(y+y1)2=2a(y+y1)x{{x}_{1}}=-4a\dfrac{\left( y+{{y}_{1}} \right)}{2}=-2a\left( y+{{y}_{1}} \right)

As, we have points (x1,y1)\left( {{x}_{1,}}{{y}_{1}} \right) as (2at,at2)\left( 2at,-a{{t}^{2}} \right).
Hence tangent through it be
x(2at)=2a(y+(at2)) 2atx=2a(yat2) atx+aya2t2=0 tx+yat2=0............(i) \begin{aligned} & x\left( 2at \right)=-2a\left( y+\left( -a{{t}^{2}} \right) \right) \\\ & \Rightarrow 2atx=-2a\left( y-a{{t}^{2}} \right) \\\ & \Rightarrow atx+ay-{{a}^{2}}{{t}^{2}}=0 \\\ & \Rightarrow tx+y-a{{t}^{2}}=0............(i) \\\ \end{aligned}

Now, let us suppose, tangent is intersecting the parabola x2=4by{{x}^{2}}=4by at points A(x1,y1)A\left( {{x}_{1}},{{y}_{1}} \right) and B(xx,y2)B\left( {{x}_{x}},{{y}_{2}} \right) and mid-point of them as (h,k).

Let us find the intersection points of parabola x2=4by{{x}^{2}}=4by and the tangent ‘T’ on x2=4ay{{x}^{2}}=-4ay.
So, from equation x2=4by{{x}^{2}}=4by, we get
y=x24by=\dfrac{{{x}^{2}}}{4b} ………………….. (ii)
Putting value of ‘y’ from equation (ii) in equation (i), we get
tx+x24bat2=0 x2+4btx4abt2=0..........(iii) \begin{aligned} & tx+\dfrac{{{x}^{2}}}{4b}-a{{t}^{2}}=0 \\\ & \Rightarrow {{x}^{2}}+4btx-4ab{{t}^{2}}=0..........(iii) \\\ \end{aligned}

As above equation is a quadratic equation so, we can get values of (x1,x2)\left( {{x}_{1}},{{x}_{2}} \right) as roots of equation (iii).
Now, we know the relation of roots with the coefficients of quadratic equation which is given as
sum of roots = - coefficient of xcoefficient of x2\text{sum of roots = - }\dfrac{\text{coefficient of x}}{\text{coefficient of }{{\text{x}}^{\text{2}}}} ……….. (iv)
product of roots = constant termcoefficient of x2\text{product of roots = }\dfrac{\text{constant term}}{\text{coefficient of }{{\text{x}}^{\text{2}}}} ……………. (v)

Now, from equation (iii), (iv) and (v), we get
x1+x2=4bt{{x}_{1}}+{{x}_{2}}=-4bt ………………. (vi)
x2+x2=4abt2{{x}_{2}}+{{x}_{2}}=4ab{{t}^{2}} ……………… (vii)
Similarly, we can get a quadratic in ‘y’ if we put value of ‘x’ from equation of tangent i.e. tx+yat2=0tx+y-a{{t}^{2}}=0 in equation of parabola x2=4by{{x}^{2}}=4by. Hence, we get
(at2yt)2=4by{{\left( \dfrac{a{{t}^{2}}-y}{t} \right)}^{2}}=4by
Now, use (ab)2=a2+b22ab{{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab , we get
a2t4+y22ayt2t2=4by y22at2y4bt2y+a2t4=0 y2(2at2+4bt2)y+a2+t4=0.......(viii) \begin{aligned} & \dfrac{{{a}^{2}}{{t}^{4}}+{{y}^{2}}-2ay{{t}^{2}}}{{{t}^{2}}}=4by \\\ & \Rightarrow {{y}^{2}}-2a{{t}^{2}}y-4b{{t}^{2}}y+{{a}^{2}}{{t}^{4}}=0 \\\ & \Rightarrow {{y}^{2}}-\left( 2a{{t}^{2}}+4b{{t}^{2}} \right)y+{{a}^{2}}+{{t}^{4}}=0.......(viii) \\\ \end{aligned}

Now, y1{{y}_{1}} and y2{{y}_{2}} are roots of above equation hence from equation (iv) and (v), we get
y1+y2=2at2+4bt2{{y}_{1}}+{{y}_{2}}=2a{{t}^{2}}+4b{{t}^{2}} …………….. (ix)
y1y2=a2t4{{y}_{1}}{{y}_{2}}={{a}^{2}}{{t}^{4}}……………. (x)
Now, as we need to find locus of midpoint of AB which can be given as
h=x1+x22h=\dfrac{{{x}_{1}}+{{x}_{2}}}{2} and k=y1+y22k=\dfrac{{{y}_{1}}+{{y}_{2}}}{2}
Hence, from equation (vi) and (ix), we get
h=4bt2h=\dfrac{-4bt}{2} and k=2at2+4bt22k=\dfrac{2a{{t}^{2}}+4b{{t}^{2}}}{2}
H=-2bt and k=2at22+4bt22=at2+2bt2k=\dfrac{2a{{t}^{2}}}{2}+\dfrac{4b{{t}^{2}}}{2}=a{{t}^{2}}+2b{{t}^{2}}

Now, we can eliminate ‘t’ by substituting value of ‘t’ from relation h and t to relation ‘k’ and ’t’, hence, we get so, we have
t=h2bt=\dfrac{-h}{2b}
And hence
k=a(h2b)2+2b(h2b)2 k=h2a4b2+2bh24b2 \begin{aligned} & k=a{{\left( \dfrac{-h}{2b} \right)}^{2}}+2b{{\left( \dfrac{-h}{2b} \right)}^{2}} \\\ & k=\dfrac{{{h}^{2}}a}{4{{b}^{2}}}+\dfrac{2b{{h}^{2}}}{4{{b}^{2}}} \\\ \end{aligned}

Now, replacing (h, k) by (x, y) to get the required locus. Hence, we get
y=x2a4b2+2bx24b2 4b2y=x2(a+2b) \begin{aligned} & y=\dfrac{{{x}^{2}}a}{4{{b}^{2}}}+\dfrac{2b{{x}^{2}}}{4{{b}^{2}}} \\\ & 4{{b}^{2}}y={{x}^{2}}\left( a+2b \right) \\\ \end{aligned}

Hence, option (a) is the correct answer.

Note: Another approach for the given problem would be that we can suppose parametric coordinates of points A and B lying on x2=4by{{x}^{2}}=4by. And write the equation of line passing through A and B. Now, this line is acting as a tangent for x2=4ay{{x}^{2}}=-4ay. So, intersection of them would be the only point. So, use this condition to get equations in parametric variables and hence get locus of midpoint of A and B.
One can suppose parametric coordinates at x2=4ay{{x}^{2}}=-4ay as (2at,at2)\left( -2at,-a{{t}^{2}} \right)as well.
Calculation is the important side of the problem as well. So, take care of it.
Writing tangent equation through point (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right) on any curve f(x)=0 is given by replacing
x2 by xx1 y2 by yy1 x by x+x12 y by y+y12 \begin{aligned} & {{\text{x}}^{\text{2}}}\text{ by x}{{\text{x}}_{\text{1}}} \\\ & {{\text{y}}^{\text{2}}}\text{ by y}{{\text{y}}_{\text{1}}} \\\ & \text{x by }\dfrac{\text{x+}{{\text{x}}_{\text{1}}}}{\text{2}} \\\ & \text{y by }\dfrac{\text{y+}{{\text{y}}_{\text{1}}}}{\text{2}} \\\ \end{aligned}