Solveeit Logo

Question

Question: A tangent to the parabola \({{x}^{2}}+4ay=0\) cuts the parabola \({{x}^{2}}=4by\) at two points A, B...

A tangent to the parabola x2+4ay=0{{x}^{2}}+4ay=0 cuts the parabola x2=4by{{x}^{2}}=4by at two points A, B. Find the locus of the midpoint of AB.
[a] (a+2b)x2=4b2y\left( a+2b \right){{x}^{2}}=4{{b}^{2}}y
[b] (b+2a)x2=4b2y\left( b+2a \right){{x}^{2}}=4{{b}^{2}}y
[c] (a+2b)y2=4b2x\left( a+2b \right){{y}^{2}}=4{{b}^{2}}x
[d] (b+2x)x2=4a2y\left( b+2x \right){{x}^{2}}=4{{a}^{2}}y

Explanation

Solution

- Hint: Use the property that the tangent of the slope of m to the parabola x2=4ay{{x}^{2}}=-4ay is given by y=mx+am2y=mx+a{{m}^{2}}. Hence find the coordinates of the point of intersection of this line with the parabola and hence find the locus of midpoint of AB.

Complete step-by-step solution -


Let the slope of the tangent at P be m.
We know that the tangent of the slope of m to the parabola x2=4ay{{x}^{2}}=-4ay is given by y=mx+am2y=mx+a{{m}^{2}}.
Hence the equation of PB is y=mx+am2y=mx+a{{m}^{2}}
Finding the points of intersection of P with the parabola x2=4by{{x}^{2}}=4by:
Substituting the value of y from the equation of PB in the equation of the parabola x2=4by{{x}^{2}}=4by, we get
x2=4b(mx+am2){{x}^{2}}=4b\left( mx+a{{m}^{2}} \right)
Hence we have x24bmx4abm2=0 (i){{x}^{2}}-4bmx-4ab{{m}^{2}}=0\text{ (i)}
Let A(x1,y1)A\equiv \left( {{x}_{1}},{{y}_{1}} \right) and B(x2,y2)B\equiv \left( {{x}_{2}},{{y}_{2}} \right), we have x1,x2{{x}_{1}},{{x}_{2}} are the roots of equation (i)
Hence we have x1+x2=4bm{{x}_{1}}+{{x}_{2}}=4bm
Also x12+x22=(x1+x2)22x1x2=16b2m2+8abm2x_{1}^{2}+x_{2}^{2}={{\left( {{x}_{1}}+{{x}_{2}} \right)}^{2}}-2{{x}_{1}}{{x}_{2}}=16{{b}^{2}}{{m}^{2}}+8ab{{m}^{2}}
Let D(h,k)D\equiv \left( h,k \right) be the midpoint of AB.
Hence we have h=x1+x22=4bm2=2bmh=\dfrac{{{x}_{1}}+{{x}_{2}}}{2}=\dfrac{4bm}{2}=2bm and k=y1+y22k=\dfrac{{{y}_{1}}+{{y}_{2}}}{2}
Since (x1,y1),(x2,y2)\left( {{x}_{1}},{{y}_{1}} \right),\left( {{x}_{2}},{{y}_{2}} \right) lie on x2=4by{{x}^{2}}=4by, we have
x12=4by1,x22=4by2 y1=x124b,y2=x224b \begin{aligned} & x_{1}^{2}=4b{{y}_{1}},x_{2}^{2}=4b{{y}_{2}} \\\ & \Rightarrow {{y}_{1}}=\dfrac{x_{1}^{2}}{4b},{{y}_{2}}=\dfrac{x_{2}^{2}}{4b} \\\ \end{aligned}

Hence we have k=x12+x228b=16b2m2+8abm28b=2bm2+am2k=\dfrac{x_{1}^{2}+x_{2}^{2}}{8b}=\dfrac{16{{b}^{2}}{{m}^{2}}+8ab{{m}^{2}}}{8b}=2b{{m}^{2}}+a{{m}^{2}}
Since h=2bmh=2bm, we have m=h2bm=\dfrac{h}{2b}
Hence we have
k=2b(h2b)2+a(h2b)2 (a+2b)h2=4b2k \begin{aligned} & k=2b{{\left( \dfrac{h}{2b} \right)}^{2}}+a{{\left( \dfrac{h}{2b} \right)}^{2}} \\\ & \Rightarrow \left( a+2b \right){{h}^{2}}=4{{b}^{2}}k \\\ \end{aligned}
Replacing h by x and k by y, we get locus of the midpoint of AB is
(a+2b)x2=4b2y\left( a+2b \right){{x}^{2}}=4{{b}^{2}}y
Hence option [a] is correct.

Note: Alternatively, you can use the parametric form of the parabola to find A, B.
Let P(2at,at2)P\equiv \left( 2at,-a{{t}^{2}} \right)
We know that the equation of the tangent at P(x1,y1)P\left( {{x}_{1}},{{y}_{1}} \right) to the parabola x2=4ay{{x}^{2}}=-4ay is given by xx1=2a(y+y1)x{{x}_{1}}=-2a\left( y+{{y}_{1}} \right)
Hence we have the equation of the tangent at P is
x(2at)=2a(yat2) y=at2tx \begin{aligned} & x\left( 2at \right)=-2a\left( y-a{{t}^{2}} \right) \\\ & \Rightarrow y=a{{t}^{2}}-tx \\\ \end{aligned}
Substituting the value of y in x2=4by{{x}^{2}}=4by, we get
x2=4b(at2xt) x2+4bxt4abt2=0 \begin{aligned} & {{x}^{2}}=4b\left( a{{t}^{2}}-xt \right) \\\ & \Rightarrow {{x}^{2}}+4bxt-4ab{{t}^{2}}=0 \\\ \end{aligned}
Hence we have x1+x2=4bt{{x}_{1}}+{{x}_{2}}=-4bt and x12+x22=16b2t2+8abt2x_{1}^{2}+x_{2}^{2}=16{{b}^{2}}{{t}^{2}}+8ab{{t}^{2}}
Hence, we have h=x1+x22=2bth=\dfrac{{{x}_{1}}+{{x}_{2}}}{2}=-2bt and k=x12+x228b=2bt2+at2k=\dfrac{{{x}_{1}}^{2}+{{x}_{2}}^{2}}{8b}=2b{{t}^{2}}+a{{t}^{2}}
Hence we have
k=2b(h2b)2+a(h2b)2 (a+2b)h2=4b2k \begin{aligned} & k=2b{{\left( \dfrac{-h}{2b} \right)}^{2}}+a{{\left( \dfrac{-h}{2b} \right)}^{2}} \\\ & \Rightarrow \left( a+2b \right){{h}^{2}}=4{{b}^{2}}k \\\ \end{aligned}
Replacing h by x and k by y, we get
(a+2b)x2=4b2y\left( a+2b \right){{x}^{2}}=4{{b}^{2}}y, which is the same equation as obtained above.
Hence option [a] is correct.