Solveeit Logo

Question

Mathematics Question on Conic sections

A tangent to the hyperbola x44y22=1\frac{x^{4}}{4}-\frac{y^{2}}{2}=1 meets x-axis at PP and y-axis at QQ. Lines PRPR and QRQR are drawn such that OPRQOPRQ is a rectangle (where OO is the origin). Then RR lies on :

A

4x2+2y2=1\frac{4}{x^{2}}+\frac{2}{y^{2}}=1

B

2x24y2=1\frac{2}{x^{2}}-\frac{4}{y^{2}}=1

C

2x2+4y2=1\frac{2}{x^{2}}+\frac{4}{y^{2}}=1

D

4x22y2=1\frac{4}{x^{2}}-\frac{2}{y^{2}}=1

Answer

4x22y2=1\frac{4}{x^{2}}-\frac{2}{y^{2}}=1

Explanation

Solution

Equation of the tangent at the point ?θ?\theta? is
xsexθaxtanθb=1\frac{x\,sex\,\theta}{a}-\frac{x\,tan\,\theta }{b}=1
P=(acosθ,0)\Rightarrow P = \left(a\,cos\,\theta, 0\right) and Q=(0,bcotθ)Q = \left(0, -b\,cot \,\theta\right)
Let RR be (h,k)h=acosθ,k=bcotθ\left(h, k\right) \Rightarrow h = a\,cos\, \theta, k = -b\, cot\,\theta
kh=basinθsinθ=bhak\Rightarrow \frac{k}{h}=\frac{-b}{a\,sin\,\theta} \Rightarrow sin\,\theta=\frac{-bh}{ak} and
cosθ=hacos\,\theta=\frac{h}{a}
By squaring and adding,
b2h2a2k2+h2a2=1\frac{b^{2}h^{2}}{a^{2}k^{2}}+\frac{h^{2}}{a^{2}}=1
b2k2+1=a2h2\Rightarrow \frac{b^{2}}{k^{2}}+1=\frac{a^{2}}{h^{2}}
a2h2b2k2=1\Rightarrow \frac{a^{2}}{h^{2}}-\frac{b^{2}}{k^{2}}=1
Now, given eqneq^{n} of hyperbola is x24y22=1\frac{x^{2}}{4}-\frac{y^{2}}{2}=1
a2=4,b2=2\Rightarrow a ^{2} = 4, b^{2}=2
R\therefore R lies on a2x2b2y2=1i.e.,4x22y2=1\frac{a^{2}}{x^{2}}-\frac{b^{2}}{y^{2}}=1 i.e., \frac{4}{x^{2}}-\frac{2}{y^{2}}=1