Solveeit Logo

Question

Question: A tangent is draw to the ellipse \(\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 16 } = 1\)so t...

A tangent is draw to the ellipse x225+y216=1\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 16 } = 1so that per

intercepted by the axes is minimum. The length of this part

of the tangent is

A

11

B

8

C

9

D

) 10

Answer

9

Explanation

Solution

Equation of tangent x5cosϕ+y4sinϕ=1\frac { x } { 5 } \cos \phi + \frac { y } { 4 } \sin \phi = 1

Length of AB = 25cos2ϕ+16sin2ϕ=t\sqrt { \frac { 25 } { \cos ^ { 2 } \phi } + \frac { 16 } { \sin ^ { 2 } \phi } } = \sqrt { t }

t = 25cos2ϕ+16sin2ϕ=25sec2ϕ+16cosec2ϕ\frac { 25 } { \cos ^ { 2 } \phi } + \frac { 16 } { \sin ^ { 2 } \phi } = 25 \sec ^ { 2 } \phi + 16 \operatorname { cosec } { } ^ { 2 } \phi

dtdϕ=50sec2ϕtanϕ32cosec2ϕcotϕ=0\frac { d t } { d \phi } = 50 \sec ^ { 2 } \phi \cdot \tan \phi - 32 \operatorname { cosec } { } ^ { 2 } \phi \cot \phi = 0 tan4ϕ=3250\tan ^ { 4 } \phi = \frac { 32 } { 50 }tan2ϕ=45\tan ^ { 2 } \phi = \frac { 4 } { 5 }

so t=25sec2ϕ+16cosec2ϕt = 25 \sec ^ { 2 } \phi + 16 \operatorname { cosec } { } ^ { 2 } \phi

=2595+169425 \cdot \frac { 9 } { 5 } + 16 \cdot \frac { 9 } { 4 } = 45 + 36

\therefore t = 81 t=81=9\sqrt { t } = \sqrt { 81 } = 9

so minimum length intercepted = '9'

so 'C' is correct.