Solveeit Logo

Question

Question: A tangent having a slope –\(\frac{4}{3}\) to the ellipse \(\frac{x^{2}}{18} + \frac{y^{2}}{32}\)= 1 ...

A tangent having a slope –43\frac{4}{3} to the ellipse x218+y232\frac{x^{2}}{18} + \frac{y^{2}}{32}= 1 intersects the major and minor axes at A and B. If O is the origin, then the area DOAB is-

A

48 sq. units

B

9 sq. units

C

24 sq. units

D

16 sq. units

Answer

24 sq. units

Explanation

Solution

Any point on the ellipse x2(32)2+y2(42)2\frac{x^{2}}{(3\sqrt{2})^{2}} + \frac{y^{2}}{(4\sqrt{2})^{2}} = 1 can be taken as (32cosθ,42sinθ)(3\sqrt{2}\cos{}\theta,4\sqrt{2}\sin\theta) and the slope of the tangent

= – b2xa2y\frac{b^{2}x}{a^{2}y}

= – 32(32cosθ)18(42sinθ)\frac{32(3\sqrt{2}\cos\theta)}{18(4\sqrt{2}\sin\theta)} = – 43\frac{4}{3} cot q .... (1)

Given slope of the tangent = –43\frac{4}{3} .... (2)

From equations (1) and (2)

cot q = 1 Ž q = π4\frac{\pi}{4}

Hence the equation of the tangent is x.1232+y.1242\frac{x.\frac{1}{\sqrt{2}}}{3\sqrt{2}} + \frac{y.\frac{1}{\sqrt{2}}}{4\sqrt{2}}= 1

(i.e.) x6+y8\frac{x}{6} + \frac{y}{8}= 1

Hence A = (6, 0), B = (0, 8)

Area of DOAB = 12\frac{1}{2}× 6 × 8 = 24 sq. units