Solveeit Logo

Question

Question: A system shown in figure, consists of a massless pulley, a spring of force constant k and a block of...

A system shown in figure, consists of a massless pulley, a spring of force constant k and a block of mass m. If block is just slightly displaced vertically down from its equilibrium position and released, then the period of vertical oscillations is–

A

T = p (m4k)\sqrt { \left( \frac { \mathrm { m } } { 4 \mathrm { k } } \right) }

B

T = 2p (m4k)\sqrt { \left( \frac { \mathrm { m } } { 4 \mathrm { k } } \right) }

C

T =2p

D

T = 2p(m3k)\sqrt { \left( \frac { \mathrm { m } } { 3 \mathrm { k } } \right) }

Answer

T = 2p (m4k)\sqrt { \left( \frac { \mathrm { m } } { 4 \mathrm { k } } \right) }

Explanation

Solution

Displacement in box = x

displacement in box = 2x

F = 2 kx

̃ F¢ = 2F

F¢ = 4 kx

̃ T = 2p (m4k)\sqrt { \left( \frac { \mathrm { m } } { 4 \mathrm { k } } \right) }