Solveeit Logo

Question

Question: A system consists of two identical cubes each of mass m linked together by a mass less spring of spr...

A system consists of two identical cubes each of mass m linked together by a mass less spring of spring constant K. The spring is compressed by x connecting cubes by thread. Find minimum value of x for which lower cube will bounce up after the thread has been burnt.

A

2mgk\frac { 2 \mathrm { mg } } { \mathrm { k } }

B

3mgk\frac { 3 \mathrm { mg } } { \mathrm { k } }

C

3mg2k\frac { 3 \mathrm { mg } } { 2 \mathrm { k } }

D

mg2k\frac { \mathrm { mg } } { 2 \mathrm { k } }

Answer

3mgk\frac { 3 \mathrm { mg } } { \mathrm { k } }

Explanation

Solution

The elongation produced x' be such that kx' = mg. Apply energy conservation as at the maximum elongation ublock = 0.

12\frac { 1 } { 2 } kx2 = mg (x + x')+ 12\frac { 1 } { 2 } kx'2

x2 - 2mgxk2mgk\frac { 2 \mathrm { mgx } } { \mathrm { k } } - 2 \frac { \mathrm { mg } } { \mathrm { k } } x' – x'2

or x2 - 2mgkx2mgk(mgk)(mgk)2=0\frac { 2 \mathrm { mg } } { \mathrm { k } } \mathrm { x } - \frac { 2 \mathrm { mg } } { \mathrm { k } } \left( \frac { \mathrm { mg } } { \mathrm { k } } \right) - \left( \frac { \mathrm { mg } } { \mathrm { k } } \right) ^ { 2 } = 0

or x = 3mgk\frac { 3 \mathrm { mg } } { \mathrm { k } }