Solveeit Logo

Question

Question: A system consists of two cubes of masses m<sub>1</sub> and m<sub>2</sub> respectively connected by a...

A system consists of two cubes of masses m1 and m2 respectively connected by a spring of force constant k. The force (F) that should be applied to the upper cube for which the lower one just lifts after the force is removed is-

A

m1g

B

m1 m2 m1+m2 g\frac { \mathrm { m } _ { 1 } \mathrm {~m} _ { 2 } } { \mathrm {~m} _ { 1 } + \mathrm { m } _ { 2 } } \mathrm {~g}

C

(m1 + m2) g

D

m2g

Answer

(m1 + m2) g

Explanation

Solution

Initially, F = m1g = k1x1

x1 = F+m2 gk\frac { \mathrm { F } + \mathrm { m } _ { 2 } \mathrm {~g} } { \mathrm { k } } ....(1)

Finally x2 = m2 gk\frac { \mathrm { m } _ { 2 } \mathrm {~g} } { \mathrm { k } } .... (2)

From conservation of energy,

m1g(x1 + x2) = 12\frac { 1 } { 2 } k (x12x22)\left( x _ { 1 } ^ { 2 } - x _ { 2 } ^ { 2 } \right) .... (3)

From (1), (2) & (3), F = (m1 + m2)g