Solveeit Logo

Question

Physics Question on laws of motion

A system consists of three masses m1m_1, m2m_2 and m3m_3 connected by a string passing over a pulley PP. The mass m1m_1 hangs freely and m2m_2 and m3m_3 are on a rough horizontal table (the coefficient of friction = μ\mu). The pulley is frictionless and of negligible mass. The downward acceleration of mass m1m_1 is (Assume m1=m2=m3=mm_1 = m_2 = m_3 = m)

Pulley

A

g(1gμ)9\frac{g(1-g\mu)}{9}

B

2gμ3\frac{2g\mu}{3}

C

g(12μ)3\frac{g(1-2\mu)}{3}

D

g(12μ)2\frac{g(1-2\mu)}{2}

Answer

g(12μ)3\frac{g(1-2\mu)}{3}

Explanation

Solution

The correct answer is C:g(12μ)3\frac{g(1-2\mu)}{3}
Force of friction on mass m2=μm2gm_2=\mu m_2g
Force of friction on mass m3=μm3gm_3=\mu m_3g
Let a be common acceleration of the
system.
a=m1gμm2gμm3gm1+m2+m3\therefore a=\frac{m_1g-\mu m_2g-\mu m_3g}{m_1+m_2+m_3}
Here, m1=m2=m3=mm_1=m_2=m_3=m
a=mgμmgμmgm+m+m=mg2μmg3m\therefore a=\frac{mg-\mu mg-\mu mg}{m+m+m}=\frac{mg-2\mu mg}{3m}
=g(12μ)3=\frac{g(1-2\mu)}{3}
Hence, the downward acceleration of
mass m1m_1 is g(12μ)3\frac{g(1-2\mu)}{3}.