Solveeit Logo

Question

Multivariable Calculus Question on Functions of Two or Three Real Variables

A subset S ⊆ R2\R^2 is said to be bounded if there is an M > 0 such that |x| ≤ M and |y| ≤ M for all (x, y) ∈ S. Which of the following subsets of R2\R^2 is/are bounded ?

A

(x,y)R2:ex2+y24{(x, y) ∈ \R^2 : e^{x^2} + y^2 \le 4}

B

(x,y)R2:x4+y24{(x, y) ∈ \R^2 : x^4 + y^2 \le 4}

C

(x,y)R2:x+y4{(x, y) ∈ \R^2 : |x| + |y| \le 4}

D

(x,y)R2:ex3+y24{(x, y) ∈ \R^2 : e^{x^3} + y^2 \le 4}

Answer

(x,y)R2:ex2+y24{(x, y) ∈ \R^2 : e^{x^2} + y^2 \le 4}

Explanation

Solution

The correct option is (A) : (x,y)R2:ex2+y24{(x, y) ∈ \R^2 : e^{x^2} + y^2 \le 4}, (B) : (x,y)R2:x4+y24{(x, y) ∈ \R^2 : x^4 + y^2 \le 4} and (C) : (x,y)R2:x+y4{(x, y) ∈ \R^2 : |x| + |y| \le 4}.