Solveeit Logo

Question

Question: A student performs an experiment to determine the Young's modulus of a wire exactly 2cm long, by Sea...

A student performs an experiment to determine the Young's modulus of a wire exactly 2cm long, by Searle's method. In a particular reading, the student measures the extension in the length of the wire to be 0.8 mm with an uncertainty of ? 0.05 mm at a load of exactly 1.0 kg. The student also measures the diameter of the wire to be 0.4 mm with an uncertainty of ? 0.01 mm. Take g = 9.8 m/s2 (exact). The Young's modulus obtained from the reading is -

A

 (2.0 ± 0.3)  1011 N/m2\ (\text{2.0 } \pm \ 0.3)\ \cdot \ 10^{11}\ Ν/m^{2}

B

(2.0 ± 0.2)  1011 N/m2 (\text{2.0 } \pm \ 0.2)\ \cdot \ 10^{11}\ Ν/m^{2}\

C

(2.0 ± 0.1)  1011 N/m2(\text{2.0 } \pm \ 0.1)\ \cdot \ 10^{11}\ Ν/m^{2}

D

(2.0 ± 0.05)  1011 N/m2(\text{2.0 } \pm \ 0.05)\ \cdot \ 10^{11}\ Ν/m^{2}

Answer

(2.0 ± 0.2)  1011 N/m2 (\text{2.0 } \pm \ 0.2)\ \cdot \ 10^{11}\ Ν/m^{2}\

Explanation

Solution

ΔYY\frac{\Delta Y}{Y} = 2ΔDD\frac{2\Delta D}{D} + Δll\frac{\Delta\mathcal{l}}{\mathcal{l}}

ΔYY\frac{\Delta Y}{Y} = 2 (0.010.4)\left( \frac{0.01}{0.4} \right) + (0.050.8)\left( \frac{0.05}{0.8} \right)

= 2× 0.025 + 0.0625

ΔYY\frac{\Delta Y}{Y} = 0.05 + 0.0625 = 0.1125

ΔY = 2× 1011 × 0. 1125 = 0.225 × 1011\Delta Y\ = \ 2 \times \ 10^{11}\ \times \ 0.\ 1125\ = \ 0.225\ \times \ 10^{11}So (± 0.2) ×1011 N/m2(\text{2 } \pm \text{ }0.2)\ \times 10^{11}\ Ν/m^{2}