Solveeit Logo

Question

Physics Question on Units and measurement

A student measures the distance traversed in free fall of a body, initially at rest, in a given time. He uses this data to estimate gg, the acceleration due to gravity. If the maximum percentage errors in measurement of the distance and the time are e1e_1 and e2e_2 respectively, the percentage error in the estimation of gg is

A

e2e1e_2-e_1

B

e1+2e2e_1+2e_2

C

e1+e2e_1+e_2

D

e12e2e_1-2e_2

Answer

e1+2e2e_1+2e_2

Explanation

Solution

From the relation
h=ut+12gt2h=ut+\frac{1}{2}gt^2
h=12gt2g=2ht2h=\frac{1}{2}gt^2 \Rightarrow g=\frac{2h}{t^2} (\because body initially at rest)
Taking natural logarithm on both sides, we get
In g=lnh2lntg = ln\, h - 2 \,ln\, t
Differentiating, Δgg=Δhh2Δtt\frac{\Delta g}{g}=\frac{\Delta h}{h}-2\frac{\Delta t}{t}
For maximum permissible error.
or (Δgg×100)max=(Δhh×100)+2×(Δtt×100)\big(\frac{\Delta g}{g}\times100 \big)_{max}=\big(\frac{\Delta h}{h}\times100 \big)+2\times \big(\frac{\Delta t}{t}\times100 \big)
According to problem
Δhh×100=e1\frac{\Delta h}{h}\times100 =e_1 and Δtt×100\frac{\Delta t}{t}\times100
=e2=e_2
Therefore,(Δgg×100)max\big(\frac{\Delta g}{g}\times100 \big)_{max}
=e1+2e2=e_1+2e_2