Solveeit Logo

Question

Physics Question on Waves

A string vibrates with a frequency of 200Hz200 \,Hz. When its length is doubled and tension is altered, it begins to vibrate with a frequency of 300Hz300\, Hz. The ratio of the new tension to the original tension is

A

9:01

B

1:09

C

3:01

D

1:03

Answer

9:01

Explanation

Solution

f=12LTμf =\frac{1}{2 L } \sqrt{\frac{T}{\mu}}
where ff is frequency, TT is Tension, L=L = length and μ\mu is constant fTL\therefore f \propto \frac{\sqrt{ T }}{ L }
f2f1=(T2T1)(L1L2)\Rightarrow \frac{ f _{2}}{ f _{1}}=\left(\sqrt{\frac{ T _{2}}{ T _{1}}}\right)\left(\frac{ L _{1}}{ L _{2}}\right)
Squaring on both sides and rearranging we get T2T1=(f2L2)2(f1L1)2\Rightarrow \frac{ T _{2}}{ T _{1}}=\frac{\left( f _{2} L _{2}\right)^{2}}{\left( f _{1} L _{1}\right)^{2}}
L2=2L1,f1=200Hz,f2=300HzL _{2}= 2 L _{ 1 }, f _{ 1 }= 2 0 0 H z , f _{2}= 3 0 0 H z
Substituting above values we get T2T1=91\frac{ T _{2}}{ T _{1}}=\frac{ 9 }{ 1 }