Solveeit Logo

Question

Physics Question on Waves

A string fixed at both ends has a standing wave mode for which the distances between adjacent nodes is 18cm18\, cm. For the next consecutive standing wave mode distances between adjacent nodes is 16cm16\, cm. The minimum possible length of the string is

A

288cm288\, cm

B

72cm72\, cm

C

144cm144\, cm

D

204cm204\, cm

Answer

144cm144\, cm

Explanation

Solution

Let the vibration takes place in nn th mode So, for 1 st case,nλ2=L\frac{n \lambda}{2}=L ...(i) and for 2nd case, (n+1)λ2=L(n+1) \frac{\lambda'}{2}=L ...(ii) From Eqs. (i) and (ii), we get nλ2=(n+1)λ2n \frac{\lambda}{2}=(n+1) \frac{\lambda'}{2} [λ2=18cm and λ2=16cm]\left[\because \frac{\lambda}{2}=18 cm \text { and } \frac{\lambda^{\prime}}{2}=16 cm \right] 18n=(n+1)16\Rightarrow 18 n=(n+1) 16 n=8\Rightarrow n =8 So, minimum possible length l=nλ2l=\frac{n \lambda}{2} l=8×18=144cm\Rightarrow l=8 \times 18=144\, cm