Solveeit Logo

Question

Question: A streamlined body falls through air from a height h on the surface of a liquid. If d and D(D \> d) ...

A streamlined body falls through air from a height h on the surface of a liquid. If d and D(D > d) represents the densities of the material of the body and liquid respectively, then the time after which the body will be instantaneously at rest, is

A

2hg\sqrt { \frac { 2 h } { g } }

B

2hgDd\sqrt { \frac { 2 h } { g } \cdot \frac { D } { d } }

C

2hgdD\sqrt { \frac { 2 h } { g } \cdot \frac { d } { D } }

D

2hg(dDd)\sqrt { \frac { 2 h } { g } } \left( \frac { d } { D - d } \right)

Answer

2hg(dDd)\sqrt { \frac { 2 h } { g } } \left( \frac { d } { D - d } \right)

Explanation

Solution

Upthrust – weight of body = apparent weight

VDgVdg=VdaV D g - V d g = V d a

Where a = retardation of body ∴ a=(Ddd)ga = \left( \frac { D - d } { d } \right) g

The velocity gained after fall from h height in air, v=2ghv = \sqrt { 2 g h }

Hence, time to come in rest,

t=va=2gh×d(Dd)g=2hg×d(Dd)t = \frac { v } { a } = \frac { \sqrt { 2 g h } \times d } { ( D - d ) g } = \sqrt { \frac { 2 h } { g } } \times \frac { d } { ( D - d ) }