Solveeit Logo

Question

Question: A straight wire of length \(\left( \pi ^ { 2 } \right)\) metre is carrying a current of 2A and the m...

A straight wire of length (π2)\left( \pi ^ { 2 } \right) metre is carrying a current of 2A and the magnetic field due to it is measured at a point distant 1 cm from it. If the wire is to be bent into a circle and is to carry the same current as before, the ratio of the magnetic field at its centre to that obtained in the first case would be

A

50 : 1

B

1 : 50

C

100 : 1

D

1 : 100

Answer

1 : 50

Explanation

Solution

If a wire of length l is bent in the form of a circle of radius r then

2πr=l2 \pi r = lr=l2πr = \frac { l } { 2 \pi }

r=l2π=π22π=π2r = \frac { l } { 2 \pi } = \frac { \pi ^ { 2 } } { 2 \pi } = \frac { \pi } { 2 }

Magnetic field due to straight wire

B1=μ04π2ir=μ04π×2×21×102B _ { 1 } = \frac { \mu _ { 0 } } { 4 \pi } \cdot \frac { 2 i } { r } = \frac { \mu _ { 0 } } { 4 \pi } \times \frac { 2 \times 2 } { 1 \times 10 ^ { - 2 } } also magnetic field due to circular loop B2=μ04π2πir=μ04π2π×2π/2B _ { 2 } = \frac { \mu _ { 0 } } { 4 \pi } \cdot \frac { 2 \pi i } { r } = \frac { \mu _ { 0 } } { 4 \pi } \cdot \frac { 2 \pi \times 2 } { \pi / 2 }B2B1=150\frac { B _ { 2 } } { B _ { 1 } } = \frac { 1 } { 50 }