Solveeit Logo

Question

Physics Question on Gravitation

A straight rod of length LL extends from x=ax = a to x=L+ax = L + a. The gravitational force is exerts on a point mass m'm' at x=0x = 0, if the mass per unit length of the rod is A+Bx2A + Bx^2, is given by:

A

Gm[A(1a+L1a)BL]Gm\left[A\left(\frac{1}{a + L} - \frac{1}{a}\right) - BL\right]

B

Gm[A(1a1a+L)+BL]Gm\left[A\left(\frac{1}{a} - \frac{1}{a + L}\right) + BL\right]

C

Gm[A(1a+L1a)+BL]Gm\left[A\left(\frac{1}{a + L} - \frac{1}{a}\right) + BL\right]

D

Gm[A(1a1a+L)BL]Gm\left[A\left(\frac{1}{a} - \frac{1}{a + L}\right) - BL\right]

Answer

Gm[A(1a1a+L)+BL]Gm\left[A\left(\frac{1}{a} - \frac{1}{a + L}\right) + BL\right]

Explanation

Solution

dm=(A+Bx2)dxdm =\left(A+Bx^{2}\right)dx
dF=GMdmx2dF = \frac{GMdm}{x^{2}}
=F=aa+LGMx2(A+Bx2)dx=F = \int^{a+L}_{a} \frac{GM}{x^{2}}\left(A +Bx^{2}\right)dx
=GM[Ax+Bx]aa+L=GM \left[- \frac{A}{x}+Bx\right] ^{a+L}_{a}
=GM[A(1a1a+L)+BL]=GM\left[A \left(\frac{1}{a} -\frac{1}{a+L}\right) +BL \right]