Solveeit Logo

Question

Mathematics Question on Straight lines

A straight line through a fixed point (2,3)(2, 3) intersects the coordinate axes at distinct points PP and QQ. If OO is the origin and the rectangle OPRQOPRQ is completed, then the locus of RR is:

A

3x + 2y = 6

B

2x + 3y = xy

C

3x + 2y = xy

D

3x + 2y = 6xy

Answer

3x + 2y = xy

Explanation

Solution

Let the equation of line be xa+yb=1\frac{x}{a}+\frac{y}{b}=1
(i) passes through the fixed point (2,3)(2,3)
2a+3b=1\Rightarrow \frac{2}{a}+\frac{3}{b}=1
P(a,0),Q(0,b),O(0,0)P(a, 0), Q(0, b), O(0,0), Let R(h,k)R(h, k)

Midpoint of ORO R is (h2,k2)\left(\frac{h}{2}, \frac{k}{2}\right)
Midpoint of PQP Q is (a2,b2)\left(\frac{a}{2}, \frac{b}{2}\right)
h=a,k=b\Rightarrow h=a, \,\,\,\,\, k=b \,\,\,\,\, \ldots (iii)
From (ii) & (iii),
2h+3k=1\frac{2}{h}+\frac{3}{k}=1 \,\,\,\,\, \Rightarrow locus of R(h,k)R(h, k)
2x+3y=13x+2y=xy\frac{2}{x}+\frac{3}{y}=1 \,\,\,\,\, \Rightarrow 3 x+2 y=x y