Solveeit Logo

Question

Question: A straight line passes through the point \(\left( {5,0} \right)\) and \(\left( {0,3} \right)\) . The...

A straight line passes through the point (5,0)\left( {5,0} \right) and (0,3)\left( {0,3} \right) . The length of the perpendicular from the point (4,4)\left( {4,4} \right) on the line is
A. 1734 B. 172 C. 1534 D. 175  A.{\text{ }}\dfrac{{17}}{{\sqrt {34} }} \\\ B.{\text{ }}\sqrt {\dfrac{{17}}{2}} \\\ C.{\text{ }}\dfrac{{15}}{{\sqrt {34} }} \\\ D.{\text{ }}\dfrac{{17}}{5} \\\

Explanation

Solution

Hint: In order to solve such type of questions firstly we have to apply the equation of straight line passes through the points (x1,y1)\left( {{x_1},{y_1}} \right) and (x2,y2)\left( {{x_2},{y_2}} \right) is (Yy1)=m(Xx1)\left( {Y - {y_1}} \right) = m\left( {X - {x_1}} \right) where, mm is the slope and formula is m=y2y1x2x1m = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}} and using the condition for two line which are perpendicular to each other ism1×m2=1{m_1} \times {m_2} = - 1.

Complete step-by-step answer:

We have given that,
The equation of straight line passes through the point (5,0)\left( {5,0} \right) and (0,3)\left( {0,3} \right)
(Yy1)=m(Xx1)(1)\left( {Y - {y_1}} \right) = m\left( {X - {x_1}} \right) - - - - - \left( 1 \right)
Where, m=y2y1x2x1m = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}} .
Here,x1=5,y1=0,x2=0,y2=3{x_1} = 5,{y_1} = 0,{x_2} = 0,{y_2} = 3
So, the slope of line, m1=3005=35{m_1} = \dfrac{{3 - 0}}{{0 - 5}} = \dfrac{{ - 3}}{5}
From equation (1), we get
(Y0)=35(X5)\left( {Y - 0} \right) = \dfrac{{ - 3}}{5}\left( {X - 5} \right)
\Rightarrow 5Y=3X+155Y = - 3X + 15
\Rightarrow 3X+5Y=15(2)3X + 5Y = 15 - - - - \left( 2 \right)
We know that the condition for two lines which are perpendicular to each other is m1×m2=1{m_1} \times {m_2} = - 1 .
35×m2=1\dfrac{{ - 3}}{5} \times {m_2} = - 1 .
\Rightarrow m2=53{m_2} = \dfrac{5}{3}
So, the equation of perpendicular line passes through (4,4)\left( {4,4} \right) is,
(Y4)=53(X4)\left( {Y - 4} \right) = \dfrac{5}{3}\left( {X - 4} \right)
\Rightarrow 3Y12=5X203Y - 12 = 5X - 20
\Rightarrow 5X3Y=8(3)5X - 3Y = 8 - - - - - - \left( 3 \right)
Multiplying equation (3) by 33 , we get
9X+15Y=45(4)9X + 15Y = 45 - - - - \left( 4 \right)
And equation (4) by 55 ,we get
25X15Y=40(5)25X - 15Y = 40 - - - - - - \left( 5 \right)
Adding equation (4) and (5), we get
9X+15Y+25X15Y=45+409X + 15Y + 25X - 15Y = 45 + 40
\Rightarrow 34X=8534X = 85
\Rightarrow X=8534X = \dfrac{{85}}{{34}}
\Rightarrow X=52X = \dfrac{5}{2}
And substituting the value of (4), we get
9(52)+15Y=459\left( {\dfrac{5}{2}} \right) + 15Y = 45
\Rightarrow 452+15Y=45\dfrac{{45}}{2} + 15Y = 45
\Rightarrow 45+30Y=45×245 + 30Y = 45 \times 2
\Rightarrow 30Y=904530Y = 90 - 45
\Rightarrow Y=4530Y = \dfrac{{45}}{{30}}
\Rightarrow Y=32Y = \dfrac{3}{2}
So,(52,32)\left( {\dfrac{5}{2},\dfrac{3}{2}} \right) is the intersection point of both perpendicular lines.
We know that distance between two points is
\Rightarrow d=(x2x1)2+(y2y1)2d = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}}
\Rightarrow d=(524)2+(324)2d = \sqrt {{{\left( {\dfrac{5}{2} - 4} \right)}^2} + {{\left( {\dfrac{3}{2} - 4} \right)}^2}}
\Rightarrow d=(32)2+(52)2d = \sqrt {{{\left( {\dfrac{3}{2}} \right)}^2} + {{\left( {\dfrac{5}{2}} \right)}^2}}
\Rightarrow d=94+254d = \sqrt {\dfrac{9}{4} + \dfrac{{25}}{4}}
\Rightarrow d=344d = \sqrt {\dfrac{{34}}{4}}
\Rightarrow d=1734d = \dfrac{{17}}{{\sqrt {34} }}
Answer (d) is correct.

Note: Whenever we face these types of questions the key concept is that after solving the equations we will get the intersection points of the both perpendicular lines and after that we have to find out the distance between two points dd.