Solveeit Logo

Question

Question: A straight line passes through the point (2, –1, –1). It is parallel to the plane 4x + y + z + 2 = 0...

A straight line passes through the point (2, –1, –1). It is parallel to the plane 4x + y + z + 2 = 0 and is perpendicular to the line x1=y2=z51\frac { x } { 1 } = \frac { y } { - 2 } = \frac { z - 5 } { 1 }. The equations of the straight line are

A

x24=y+11=z+11\frac { x - 2 } { 4 } = \frac { y + 1 } { 1 } = \frac { z + 1 } { 1 }

B

x+24=y11=z11\frac { x + 2 } { 4 } = \frac { y - 1 } { 1 } = \frac { z - 1 } { 1 }

C

x21=y+11=z+13\frac { x - 2 } { - 1 } = \frac { y + 1 } { 1 } = \frac { z + 1 } { 3 }

D

x+21=y11=z13\frac { x + 2 } { - 1 } = \frac { y - 1 } { 1 } = \frac { z - 1 } { 3 }

Answer

x21=y+11=z+13\frac { x - 2 } { - 1 } = \frac { y + 1 } { 1 } = \frac { z + 1 } { 3 }

Explanation

Solution

Let direction cosines of straight line be l, m, n

⇒ 4l + m + n = 0,

l – 2m + n = 0

.

Equation of straight line is x21=y+11=z+13\frac { x - 2 } { - 1 } = \frac { y + 1 } { 1 } = \frac { z + 1 } { 3 }