Solveeit Logo

Question

Physics Question on Moving charges and magnetism

A straight conductor carrying current ii splits into two parts as shown in the figure. The radius of the circular loop is RR. The total magnetic field at the centre PP at the loop is :

A

Zero

B

3μo\mu_oi/32 R, outward

C

3μo\mu_oi/32R, inward

D

μ0i2R\frac{\mu_{0}i}{2R},inward

Answer

Zero

Explanation

Solution

The correct answer is A:Zero
Magnetic field due to i1=μ0i12Rθ12πi_1 = \frac{\mu_0 i_1}{2R} \frac{\theta_1}{2\pi}
(Into the plane)
Magnetic field due to i2=μ0i22Rθ22πi_2 = \frac{\mu_0 i_2}{2R} \frac{\theta_2}{2\pi}
(out of the plane )
For parallel combination i1i2=ρl2A×Aρl1=l1l2\frac{i_1}{i_2} = \frac{\rho l_2}{A} \times \frac{A}{\rho l_1} = \frac{l_1}{l_2}
i1i2=14(2πR)34(2πR)\Rightarrow \frac{i_1}{i_2} = \frac{\frac{1}{4} (2\pi R)}{\frac{3}{4} (2\pi R)}
=13= \frac{1}{3}
i1=i23\Rightarrow i_1 = \frac{i_2}{3}
i2=3i1\Rightarrow i_2 = 3i_1
\therefore Net magnetic field
=μ0i12R(θ12π)μ0i22R(θ22π)= \frac{\mu_0i_1}{2R}(\frac{\theta_1}{2\pi}) - \frac{\mu_0 i_2}{2R}(\frac{\theta_2}{2\pi})
=μ02R(3π2×2π)μ0i22R(π2×2π)= \frac{\mu_0}{2R}(\frac{3\pi}{2\times 2\pi}) - \frac{\mu_0i_2}{2R}(\frac{\pi}{2\times 2\pi})
=μ02R[3i14i24]= \frac{\mu_0}{2R}[\frac{3i_1}{4} - \frac{i_2}{4}]
=μ02R[3i143i14]=0= \frac{\mu_0}{2R}[\frac{3i_1}{4} - \frac{3i_1}{4}]= 0